Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation
暂无分享,去创建一个
Alessandro Reali | Ferdinando Auricchio | Giuseppe Balduzzi | Simone Morganti | F. Auricchio | A. Reali | S. Morganti | Giuseppe Balduzzi
[1] Dewey H. Hodges,et al. Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam , 2010 .
[2] Alessandro Reali,et al. Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .
[3] F. Auricchio,et al. Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .
[4] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[5] Mohan Rao Nalluri,et al. Flapwise bending vibration analysis of functionally graded rotating double-tapered beams , 2015, International Journal of Mechanical and Materials Engineering.
[6] Mehdi Aminbaghai,et al. Analytische Berechnung von Voutenstäben nach Theorie II. Ordnung unter Berücksichtigung der M‐ und Q‐Verformungen , 2006 .
[7] Buntara Sthenly Gan,et al. DEVELOPMENT OF CONSISTENT SHAPE FUNCTIONS FOR LINEARLY SOLID TAPERED TIMOSHENKO BEAM , 2015 .
[8] E. H. Atkin. Tapered Beams: Suggested Solutions for Some Typical Aircraft Cases , 1938 .
[9] Ferdinando Auricchio,et al. The dimensional reduction approach for 2D non-prismatic beam modelling: A solution based on Hellinger–Reissner principle , 2015 .
[10] H. W. Coultas,et al. Theory of structures , 1927 .
[11] Ahmad Shooshtari,et al. An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler–Bernoulli and Timoshenko beam elements , 2010 .
[12] Ferdinando Auricchio,et al. Planar Timoshenko-like model for multilayer non-prismatic beams , 2018 .
[13] Liping Liu. THEORY OF ELASTICITY , 2012 .
[14] Sai-Kit Yeung,et al. Isogeometric collocation methods for Cosserat rods and rod structures , 2017 .
[15] Gaetano Zingone,et al. Deflections of Beams with Varying Rectangular Cross Section , 1992 .
[16] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[17] Alessandro Reali,et al. Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .
[18] Ferdinando Auricchio,et al. Serviceability Analysis of Non-Prismatic Timber Beams: Derivation and Validation of New and Effective Straightforward Formulas , 2017 .
[19] Alessandro Reali,et al. An Introduction to Isogeometric Collocation Methods , 2015 .
[20] Alessandro Reali,et al. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .
[21] G. Failla,et al. General finite element description for non-uniform and discontinuous beam elements , 2012 .
[22] H. Rubin. Analytische Berechnung von Stäben mit linear veränderlicher Höhe unter Berücksichtigung von M‐, Q‐ und N‐Verformungen , 1999 .
[23] D. H. Young,et al. Theory of Structures , 1965 .
[24] Josef Eberhardsteiner,et al. Non-prismatic beams: A simple and effective Timoshenko-like model , 2016 .
[25] Giulio Alfano,et al. Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle , 2015 .
[26] Bruno A. Boley,et al. On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section , 1963 .
[27] J. L. Krahula. Shear formula for beams of variable cross section , 1975 .
[28] Alessandro Reali,et al. An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .
[29] Ranjan Ganguli,et al. Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements , 2007 .
[30] Guodong Zhang,et al. Analysis of three-dimensional curved beams using isogeometric approach , 2016 .
[31] L. S. Srinath,et al. Advanced Mechanics of Solids , 1982 .
[32] Pedro Gonzaga,et al. Structural analysis of a curved beam element defined in global coordinates , 2008 .
[33] John B. Kosmatka,et al. Exact stiffness matrix of a nonuniform beam—II. Bending of a timoshenko beam , 1993 .
[34] Ferdinando Auricchio,et al. A new modeling approach for planar beams: finite-element solutions based on mixed variational derivations , 2010 .