Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance

[1]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[2]  Jun Mao,et al.  Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency , 2018, Nature Communications.

[3]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[4]  Jun Mao,et al.  Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers , 2018, Nature Communications.

[5]  Gang Chen,et al.  Advances in thermoelectrics , 2018 .

[6]  David J. Singh,et al.  Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers , 2018, Nature Communications.

[7]  A. Zunger Inverse design in search of materials with target functionalities , 2018 .

[8]  Jun Mao,et al.  High thermoelectric performance of α-MgAgSb for power generation , 2018 .

[9]  David J. Singh,et al.  New stable ternary alkaline-earth metal Pb(II) oxides: Ca /Sr /BaPb 2 O 3 and BaPbO 2 , 2017 .

[10]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[11]  Jun Mao,et al.  Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials , 2017, Proceedings of the National Academy of Sciences.

[12]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[13]  E. Bauer,et al.  (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT , 2017 .

[14]  Liu Yong,et al.  New trends, strategies and opportunities in thermoelectric materials: A perspective , 2017 .

[15]  Z. Ren,et al.  Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr) , 2017 .

[16]  David J. Singh,et al.  Infrared absorption and visible transparency in heavily doped p-type BaSnO3 , 2017 .

[17]  J. Larsen,et al.  Optical properties of Cu2ZnSn(SxSe1-x)4 solar absorbers: Spectroscopic ellipsometry and ab initio calculations , 2017 .

[18]  Gang Chen,et al.  Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers , 2017 .

[19]  J. Larsen,et al.  Optical properties of Cu 2 ZnSn ( SxSe 1x ) 4 solar absorbers : Spectroscopic ellipsometry and ab initio calculations , 2017 .

[20]  Sandip Bhattacharya,et al.  A novel p-type half-Heusler from high-throughput transport and defect calculations , 2016 .

[21]  Yuan Liu,et al.  Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb , 2016, Proceedings of the National Academy of Sciences.

[22]  Boris Kozinsky,et al.  Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity , 2016 .

[23]  David J. Singh,et al.  Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity , 2016, 1605.08252.

[24]  E. Bauer,et al.  Constitution of the systems {V,Nb,Ta}-Sb and physical properties of di-antimonides {V,Nb,Ta}Sb2 , 2015 .

[25]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[26]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[27]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[28]  Kathy Lawrence,et al.  Looking back and moving forward. , 2014, Canadian family physician Medecin de famille canadien.

[29]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[30]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[31]  Gang Chen,et al.  Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N‐Type Half‐Heusler Materials HfxZr1–xNiSn0.99Sb0.01 , 2013 .

[32]  Gang Chen,et al.  Thermoelectric Property Study of Nanostructured p‐Type Half‐Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2 , 2013 .

[33]  Liping Yu,et al.  Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. , 2013, Journal of the American Chemical Society.

[34]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[35]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[36]  Lauryn L. Baranowski,et al.  Advances in Thermal Conductivity , 2012 .

[37]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[38]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[39]  Hui Wang,et al.  Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2 , 2012 .

[40]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[41]  Gang Chen,et al.  Enhancement in Thermoelectric Figure‐Of‐Merit of an N‐Type Half‐Heusler Compound by the Nanocomposite Approach , 2011 .

[42]  P. Blaha,et al.  Merits and limits of the modified Becke-Johnson exchange potential , 2011 .

[43]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[44]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[45]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[46]  Xinbing Zhao,et al.  High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering , 2009 .

[47]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[48]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[49]  Y. Kimura,et al.  Thermoelectric properties of directionally solidified half-Heusler compound NbCoSn alloys , 2008 .

[50]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[51]  A T Burkov,et al.  Experimental set-up for thermopower and resistivity measurements at 100-1300 K , 2001 .

[52]  S. Poon,et al.  Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx , 2000 .

[53]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[54]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[55]  A. T. Burkov,et al.  Experimental set-up for thermopower and resistivity measurements at 100-1300 K , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[59]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[60]  E. P. Lewis In perspective. , 1972, Nursing outlook.