III-V/Si hybrid photonic devices by direct fusion bonding

Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration.

[1]  M. Sugimoto,et al.  High efficiency GaAs thin film solar cells by peeled film technology , 1978 .

[2]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[3]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[4]  Herbert Kroemer,et al.  GaAs on Si and related systems: Problems and prospects , 1989 .

[5]  M. Yamaguchi,et al.  Heteroepitaxial growth and characterization of InP on Si substrates , 1990 .

[6]  Sarah R. Kurtz,et al.  Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter , 1990 .

[7]  S. Valette,et al.  Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides , 1992 .

[8]  M. Bruel Silicon on insulator material technology , 1995 .

[9]  F. A. Kish,et al.  Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces , 1995 .

[10]  K. Uomi,et al.  Direct wafer bonding of III-V compound semiconductors for free-material and free-orientation integration , 1997 .

[11]  Elyse Rosenbaum,et al.  Mechanism of stress-induced leakage current in MOS capacitors , 1997 .

[12]  U. Gösele,et al.  SemiConductor Wafer Bonding: Science and Technology , 1998 .

[13]  M. Hammar,et al.  Wafer fused p-InP/p-GaAs heterojunctions , 1998 .

[14]  Jordi Suñé,et al.  Soft breakdown fluctuation events in ultrathin SiO2 layers , 1998 .

[15]  David T. Crouse,et al.  Electrical properties of wafer-bonded GaAs/Si heterojunctions , 1998 .

[16]  M. Umeno,et al.  Heteroepitaxial technologies on Si for high-efficiency solar cells , 1998 .

[17]  M. Hammar,et al.  Systematics of electrical conductivity across InP to GaAs wafer fused interfaces , 1999 .

[18]  K. Kato,et al.  PLC hybrid integration technology and its application to photonic components , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  M. Umeno,et al.  Electrical Characteristics of GaAs Bonded to Si Using SeS2 Technique , 2000 .

[20]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[21]  Bernard Aspar,et al.  InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 [micro sign]m , 2001 .

[22]  Tadatomo Suga,et al.  Investigation of the bonding strength and interface current of p-Si/n-GaAs wafers bonded by surface activated bonding at room temperature , 2001 .

[23]  K. Cheng,et al.  Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding , 2002 .

[24]  Manfred Reiche,et al.  Compound semiconductor interfaces obtained by direct wafer bonding in hydrogen or forming gas , 2002 .

[25]  E. Jalaguier,et al.  InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser , 2002 .

[26]  Y. Okada,et al.  Growth of high-quality GaAs/Si films for use in solar cell applications , 2004 .

[27]  Harry A. Atwater,et al.  Direct-bonded GaAs /InGaAs tandem solar cell , 2006 .

[28]  P. Yu,et al.  Electrical characterization of GaAs metal bonded to Si , 2006 .

[29]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[30]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[31]  Philippe Regreny,et al.  III-V/Si photonics by die-to-wafer bonding , 2007 .

[32]  K. Maex,et al.  Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates , 2008, IEEE Electron Device Letters.

[33]  T. Alford,et al.  High crystalline-quality III-V layer transfer onto Si substrate , 2008 .

[34]  Integration of thin layers of single-crystalline InP with flexible substrates , 2008 .

[35]  Avi Zadok,et al.  Electrically pumped hybrid evanescent Si/InGaAsP lasers. , 2009, Optics letters.

[36]  Yasuhiko Arakawa,et al.  Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. , 2009, Optics express.

[37]  Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features. , 2009, Optics letters.

[38]  D. Law,et al.  Semiconductor-bonded III–V multijunction space solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[39]  Heike Riel,et al.  Si-InAs heterojunction Esaki tunnel diodes with high current densities , 2010 .

[40]  Yasuhiko Arakawa,et al.  Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. , 2010, Optics express.

[41]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[42]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[43]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[44]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[45]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[46]  Yasuhiko Arakawa,et al.  Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis , 2011, IEICE Electron. Express.

[47]  G. Roelkens,et al.  Hybrid III-V semiconductor/silicon nanolaser. , 2011, Optics express.

[48]  Constance J. Chang-Hasnain Nanolasers Grown on Silicon , 2012 .

[49]  W. Tompson,et al.  Problems and Prospects: , 2020, Jewish Christianity.