Mapping visual functions onto molecular cell types in the mouse superior colliculus

[1]  Hongkui Zeng What is a cell type and how to define it? , 2022, Cell.

[2]  J. Rubenstein,et al.  Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin , 2022, Nature Neuroscience.

[3]  E. H. Feinberg,et al.  Virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq) defines projection neurons involved in sensorimotor integration , 2021, bioRxiv.

[4]  M. Carandini,et al.  A transcriptomic axis predicts state modulation of cortical interneurons , 2021, Nature.

[5]  A. Saleem,et al.  Functional Organisation of the Mouse Superior Colliculus , 2021, Frontiers in Neural Circuits.

[6]  Xiaoqun Wang,et al.  Transcriptomic encoding of sensorimotor transformation in the midbrain , 2021, bioRxiv.

[7]  Jason W. Triplett,et al.  A cell–ECM mechanism for connecting the ipsilateral eye to the brain , 2021, Proceedings of the National Academy of Sciences.

[8]  T. Nguyen,et al.  Dense Functional and Molecular Readout of a Circuit Hub in Sensory Cortex , 2021, bioRxiv.

[9]  M. Bickford,et al.  Unraveling circuits of visual perception and cognition through the superior colliculus , 2021, Neuron.

[10]  Victor J DePiero,et al.  Lack of Evidence for Stereotypical Direction Columns in the Mouse Superior Colliculus , 2020, The Journal of Neuroscience.

[11]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[12]  D. Tadin,et al.  Linking Neuronal Direction Selectivity to Perceptual Decisions About Visual Motion. , 2020, Annual review of vision science.

[13]  M. Bickford,et al.  GABAergic cell types in the superficial layers of the mouse superior colliculus , 2020, The Journal of comparative neurology.

[14]  Zeynep Turan,et al.  The sifting of visual information in the superior colliculus , 2020, eLife.

[15]  D. Loew,et al.  Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons , 2019, Neuron.

[16]  Jianhua Cang,et al.  Effects of Locomotion on Visual Responses in the Mouse Superior Colliculus , 2019, The Journal of Neuroscience.

[17]  C. Niell,et al.  Defined Cell Types in Superior Colliculus Make Distinct Contributions to Prey Capture Behavior in the Mouse , 2019, Current Biology.

[18]  André Marques-Smith,et al.  Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits , 2019, Science.

[19]  Trygve E Bakken,et al.  Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.

[20]  S. Solomon,et al.  Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse , 2018, The Journal of physiology.

[21]  Michael C. Kelly,et al.  Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-nucleus RNA Sequencing. , 2018, Journal of visualized experiments : JoVE.

[22]  Jianhua Cang,et al.  Visual Function, Organization, and Development of the Mouse Superior Colliculus. , 2018, Annual review of vision science.

[23]  Wei Wei,et al.  Neural Mechanisms of Motion Processing in the Mammalian Retina. , 2018, Annual review of vision science.

[24]  Shawn R. Olsen,et al.  Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice , 2018, Neuron.

[25]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[26]  Jianhua Cang,et al.  Bidirectional encoding of motion contrast in the mouse superior colliculus , 2018, eLife.

[27]  Samuel D. Gale,et al.  Distinct cell types in the superficial superior colliculus project to the dorsal lateral geniculate and lateral posterior thalamic nuclei , 2018, Journal of neurophysiology.

[28]  P. May,et al.  Parvalbumin and GABA Microcircuits in the Mouse Superior Colliculus , 2018, Front. Neural Circuits.

[29]  Shinya Ito,et al.  The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function , 2018, Front. Neural Circuits.

[30]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[31]  M. A. Basso,et al.  Circuits for Action and Cognition: A View from the Superior Colliculus. , 2017, Annual review of vision science.

[32]  D. Feldheim,et al.  Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion , 2017, The Journal of Neuroscience.

[33]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[34]  S. Linnarsson,et al.  A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA , 2017, Scientific Reports.

[35]  Hui Chen,et al.  Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex , 2017, The Journal of Neuroscience.

[36]  Jianhua Cang,et al.  Retinal Origin of Direction Selectivity in the Superior Colliculus , 2017, Nature Neuroscience.

[37]  Samuel D. Gale,et al.  Active Dendritic Properties and Local Inhibitory Input Enable Selectivity for Object Motion in Mouse Superior Colliculus Neurons , 2016, The Journal of Neuroscience.

[38]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[39]  In-Jung Kim,et al.  Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus , 2016, The Journal of comparative neurology.

[40]  Gregory Gauvain,et al.  Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus , 2016, Journal of neurophysiology.

[41]  Sara B. Linker,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[42]  Qian Wang,et al.  A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice , 2015, Science.

[43]  Jianhua Cang,et al.  Neurons in the Most Superficial Lamina of the Mouse Superior Colliculus Are Highly Selective for Stimulus Direction , 2015, The Journal of Neuroscience.

[44]  Jianhua Cang,et al.  Visual Cortex Modulates the Magnitude but Not the Selectivity of Looming-Evoked Responses in the Superior Colliculus of Awake Mice , 2014, Neuron.

[45]  Samuel D. Gale,et al.  Distinct Representation and Distribution of Visual Information by Specific Cell Types in Mouse Superficial Superior Colliculus , 2014, The Journal of Neuroscience.

[46]  Onkar S. Dhande,et al.  Retinal ganglion cell maps in the brain: implications for visual processing , 2014, Current Opinion in Neurobiology.

[47]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[48]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[49]  Jianhua Cang,et al.  Developmental mechanisms of topographic map formation and alignment. , 2013, Annual review of neuroscience.

[50]  R. Krauzlis,et al.  Superior colliculus and visual spatial attention. , 2013, Annual review of neuroscience.

[51]  Quanxin Wang,et al.  Stream-Related Preferences of Inputs to the Superior Colliculus from Areas of Dorsal and Ventral Streams of Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[52]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[53]  N. J. Gandhi,et al.  Motor functions of the superior colliculus. , 2011, Annual review of neuroscience.

[54]  J. Sanes,et al.  Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus , 2011, The Journal of comparative neurology.

[55]  Masahito Yamagata,et al.  Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections , 2011, The Journal of Neuroscience.

[56]  Jianhua Cang,et al.  Visual Receptive Field Properties of Neurons in the Superficial Superior Colliculus of the Mouse , 2010, The Journal of Neuroscience.

[57]  J. Sanes,et al.  Laminar Restriction of Retinal Ganglion Cell Dendrites and Axons: Subtype-Specific Developmental Patterns Revealed with Transgenic Markers , 2010, The Journal of Neuroscience.

[58]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[59]  H. Wässle,et al.  Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines , 2009, Neuroscience.

[60]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[61]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[62]  Samuel D. Gale,et al.  Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R. Mize,et al.  Immunocytochemical localization of gamma‐aminobutyric acid (GABA) in the cat superior colliculus , 1988, The Journal of comparative neurology.

[64]  J. Flanagan,et al.  RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. , 2012, The Journal of molecular diagnostics : JMD.

[65]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[66]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.