On Optimality of Local Control of Chaos

Local control stabilizes chaotic motions by applying a state feedback only within a possible strongly bounded state space region of control (SSRC). In this paper, we consider the question of when a...

[1]  R. Fletcher Practical Methods of Optimization , 1988 .

[2]  A. Hammad,et al.  Stabilization of chaotic dynamics: a modern control approach , 1996 .

[3]  Robert Mettin,et al.  Control of Chaotic Maps by Optimized Periodic Inputs , 1998 .

[4]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[5]  M. Paskota On Local Control of Chaos: the Neighbourhood Size , 1996 .

[6]  G. Baier,et al.  Maximum hyperchaos in generalized Hénon maps , 1990 .

[7]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[8]  Ute Dressler,et al.  Controlling chaotic dynamical systems using time delay coordinates , 1992 .

[9]  Sabino Gadaleta,et al.  Optimal chaos control through reinforcement learning. , 1999, Chaos.

[10]  Shing‐Tai Pan,et al.  Optimal Control of Chaos with Synchronization , 1997 .

[11]  James D. Meiss,et al.  Controlling chaotic transport through recurrence , 1995 .

[12]  L. M. Hocking Optimal control : an introduction to the theory with applications , 1991 .

[13]  de Sousa Vieira M,et al.  Controlling chaos using nonlinear feedback with delay. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Kok Lay Teo,et al.  On control of chaos: Higher periodic orbits , 1995 .

[15]  Earl H. Dowell,et al.  On the optimality of the Ott-Grebogi-Yorke control scheme , 1998 .

[16]  Grebogi,et al.  Higher-dimensional targeting. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Celso Grebogi,et al.  THE CONTROL OF CHAOS: THEORETICAL SCHEMES AND EXPERIMENTAL REALIZATIONS , 1998 .

[18]  Brun,et al.  Control of NMR-laser chaos in high-dimensional embedding space. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Hendrik Richter,et al.  Local Control of Chaotic Systems — A Lyapunov Approach , 1998 .

[20]  Kok Lay Teo,et al.  Directing Orbits of Chaotic Dynamical Systems , 1995 .

[21]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[22]  Hendrik Richter,et al.  Optimization of local control of chaos by an evolutionary algorithm , 2000 .

[23]  Henning Lenz,et al.  When is OGY Control More Than Just Pole Placement , 1997 .