The Extremely Buried Nucleus of IRAS 17208–0014 Observed at Submillimeter and Near-infrared Wavelengths

The ultraluminous infrared galaxy IRAS 17208−0014 is a late-stage merger that hosts a buried active galactic nucleus (AGN). To investigate its nuclear structure, we performed high-spatial-resolution ( ∼ 0.″04 ∼ 32 pc) Atacama Large Millimeter/submillimeter Array (ALMA) observations in Band 9 (∼450 μm or ∼660 GHz), along with near-infrared AKARI spectroscopy in 2.5–5.0 μm. The Band 9 dust continuum peaks at the AGN location, and toward this position CO(J = 6 − 5) and CS(J = 14 − 13) are detected in absorption. Comparison with nonlocal thermal equilibrium calculations indicates that, within the central beam (r ∼ 20 pc), there exists a concentrated component that is dense (107 cm−3) and warm (>200 K) and has a large column density ( NH2>1023cm−2 ). The AKARI spectrum shows deep and broad CO rovibrational absorption at 4.67 μm. Its band profile is well reproduced with a similarly dense and large column but hotter (∼1000 K) gas. The region observed through absorption in the near-infrared is highly likely in the nuclear direction, as in the submillimeter, but with a narrower beam including a region closer to the nucleus. The central component is considered to possess a hot structure where vibrationally excited HCN emission originates. The most plausible heating source for the gas is X-rays from the AGN. The AKARI spectrum does not show other AGN signs in 2.5–4 μm, but this absence may be usual for AGNs buried in a hot mid-infrared core. Further, based on our ALMA observations, we relate the various nuclear structures of IRAS 17208−0014 that have been proposed in the literature.

[1]  Nasa,et al.  Thermal imaging of dust hiding the black hole in NGC 1068 , 2021, Nature.

[2]  A. Evans,et al.  Deeply Buried Nuclei in the Infrared-luminous Galaxies NGC 4418 and Arp 220. II. Line Forests at λ = 1.4–0.4 mm and Circumnuclear Gas Observed with ALMA , 2021, The Astrophysical Journal.

[3]  T. Nakagawa,et al.  Study of the Inner Structure of the Molecular Torus in IRAS 08572+3915 NW with Velocity Decomposition of CO Rovibrational Absorption Lines , 2021, The Astrophysical Journal.

[4]  P. P. van der Werf,et al.  CON-quest , 2021, 2102.13563.

[5]  Dieu D. Nguyen,et al.  ALMA 0.″02 Resolution Observations Reveal HCN-abundance-enhanced Counter-rotating and Outflowing Dense Molecular Gas at the NGC 1068 Nucleus , 2020, The Astrophysical Journal.

[6]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[7]  D. Meier,et al.  ALMA Observations of Multiple CO and C Lines toward the Active Galactic Nucleus of NGC 7469: An X-Ray-dominated Region Caught in the Act , 2020, The Astrophysical Journal.

[8]  J. Glenn,et al.  Arp 220: New Observational Insights into the Structure and Kinematics of the Nuclear Molecular Disks and Surrounding Gas , 2020, The Astrophysical Journal.

[9]  S. Satyapal,et al.  The X-ray view of merger-induced active galactic nuclei activity at low redshift , 2020, 2006.01850.

[10]  A. Tanimoto,et al.  Application of an X-Ray Clumpy Torus Model (XCLUMPY) to 10 Obscured Active Galactic Nuclei Observed with Suzaku and NuSTAR , 2020, The Astrophysical Journal.

[11]  M. Donahue,et al.  A molecular absorption line survey towards the AGN of Hydra-A , 2020, Monthly Notices of the Royal Astronomical Society.

[12]  A. Hopkins,et al.  Mergers trigger active galactic nuclei out to z ∼ 0.6 , 2020, Astronomy & Astrophysics.

[13]  S. Kameno,et al.  A Massive Molecular Torus inside a Gas-poor Circumnuclear Disk in the Radio Galaxy NGC 1052 Discovered with ALMA , 2020, The Astrophysical Journal.

[14]  K. Ichikawa,et al.  Obscuring Fraction of Active Galactic Nuclei Implied by Supernova and Radiative Feedbacks , 2019, The Astrophysical Journal.

[15]  R. Neri,et al.  ALMA images the many faces of the NGC 1068 torus and its surroundings , 2019, Astronomy & Astrophysics.

[16]  E. Gonz'alez-Alfonso,et al.  The Greenhouse Effect in Buried Galactic Nuclei and the Resonant HCN Vibrational Emission , 2019, The Astrophysical Journal.

[17]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[18]  K. Alatalo,et al.  The hidden heart of the luminous infrared galaxy IC 860 , 2019, Astronomy & Astrophysics.

[19]  T. Nakagawa,et al.  A systematic study of ULIRGs using near-infrared absorption bands reveals a strong UV environment in their star-forming regions , 2019, Publications of the Astronomical Society of Japan.

[20]  S. Veilleux,et al.  Hidden or missing outflows in highly obscured galaxy nuclei? , 2019, Astronomy & Astrophysics.

[21]  A. Evans,et al.  Keck OSIRIS AO LIRG Analysis (KOALA): Feedback in the Nuclei of Luminous Infrared Galaxies , 2018, The Astrophysical Journal.

[22]  Y. Ueda,et al.  BAT AGN Spectroscopic Survey. XI. The Covering Factor of Dust and Gas in Swift/BAT Active Galactic Nuclei , 2018, The Astrophysical Journal.

[23]  Jessica R. Lu,et al.  A population of luminous accreting black holes with hidden mergers , 2018, Nature.

[24]  T. Nakagawa,et al.  Revised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy: Post-cryogenic phase , 2018, Publications of the Astronomical Society of Japan.

[25]  K. Kohno,et al.  Circumnuclear Multiphase Gas in the Circinus Galaxy. II. The Molecular and Atomic Obscuring Structures Revealed with ALMA , 2018, The Astrophysical Journal.

[26]  A. Evans,et al.  The AKARI 2.5–5 micron spectra of luminous infrared galaxies in the local Universe , 2018, Astronomy & Astrophysics.

[27]  K. Iwasawa,et al.  The role of molecular gas in the nuclear regions of IRAS 00183-7111 , 2018, Astronomy & Astrophysics.

[28]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[29]  D. Riechers,et al.  The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows , 2018, 1804.03147.

[30]  M. Imanishi,et al.  ALMA Reveals an Inhomogeneous Compact Rotating Dense Molecular Torus at the NGC 1068 Nucleus , 2018, 1801.06564.

[31]  A. Leroy,et al.  Fast, Collimated Outflow in the Western Nucleus of Arp 220 , 2017, 1712.06381.

[32]  T. Nakagawa,et al.  The Near-infrared CO Absorption Band as a Probe to the Innermost Part of an AGN-obscuring Material , 2017, 1712.01287.

[33]  T. Izumi,et al.  Circumnuclear Multi-phase Gas in the Circinus Galaxy. I. Non-LTE Calculations of CO Lines , 2017, 1711.10117.

[34]  Benjamin D. Johnson,et al.  Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties , 2017, 1709.04469.

[35]  A. Evans,et al.  Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies , 2017, 1706.06271.

[36]  L. Ho,et al.  Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured , 2017, 1701.04825.

[37]  J. Bernard-Salas,et al.  HERUS: A CO ATLAS FROM SPIRE SPECTROSCOPY OF LOCAL ULIRGs , 2016, 1610.06206.

[38]  Naoj,et al.  ALMA HCN and HCO+ J=3-2 observations of optical Seyfert and luminous infrared galaxies -- Confirmation of elevated HCN-to-HCO+ flux ratios in AGNs -- , 2016, 1609.01291.

[39]  P. Roche,et al.  The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view , 2016, 1608.08751.

[40]  B. Robertson,et al.  ALMA Resolves the Nuclear Disks of Arp 220 , 2016, 1605.09381.

[41]  S. Viti,et al.  The unbearable opaqueness of Arp 220 , 2016, 1603.01291.

[42]  T. Nakagawa,et al.  Revised Wavelength and Spectral Response Calibrations for AKARI Near-Infrared Grism Spectroscopy: Cryogenic Phase , 2016, 1601.07548.

[43]  R. Neri,et al.  High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614 , 2015, 1505.04705.

[44]  G. Fuller,et al.  Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN , 2015, 1504.06824.

[45]  L. Kewley,et al.  Shocked gas in IRAS F17207-0014: ISM collisions and outflows , 2015, 1501.07289.

[46]  T. Nakagawa,et al.  THE AKARI 2.5–5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE , 2015, 1503.04925.

[47]  R. Neri,et al.  High resolution observations of HCN and HCO^{+}J = 3-2 in the disk and outflow of Mrk 231. Detection of vibrationally excited HCN in the warped nucleus , 2014, 1411.2474.

[48]  R. Maiolino,et al.  Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies , 2014, Proceedings of the International Astronomical Union.

[49]  G. Zamorani,et al.  The incidence of obscuration in active galactic nuclei , 2013, 1311.1305.

[50]  M. Imanishi,et al.  ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250 , 2013, 1308.4414.

[51]  H. Kaneda,et al.  A Relation of the PAH3.3μm Feature with Star-forming Activity for Galaxies with aWide Range of Infrared Luminosity , 2013, 1307.6356.

[52]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[53]  L. Kewley,et al.  MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE , 2013, 1302.4477.

[54]  T. Nakagawa,et al.  Infrared Spectroscopy of CO Ro-Vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915 , 2012, 1208.4663.

[55]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[56]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[57]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES , 2011, 1108.3507.

[58]  S. Veilleux,et al.  C-GOALS: Chandra observations of a complete sample of luminous infrared galaxies from the IRAS Revised Bright Galaxy Survey , 2011, 1103.2755.

[59]  A. Evans,et al.  THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE , 2010, 1012.4012.

[60]  Hiroshi Murakami,et al.  AKARI warm mission , 2010, Astronomical Telescopes + Instrumentation.

[61]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[62]  M. Salvati,et al.  The role of nuclear activity as the power source of ultraluminous infrared galaxies , 2010, 1003.0858.

[63]  G. Risaliti,et al.  A quantitative determination of the AGN content in local ULIRGs through L-band spectroscopy , 2009, 0908.4544.

[64]  R. Maiolino,et al.  Exploring the active galactic nucleus and starburst content of local ultraluminous infrared galaxies through 5–8 μm spectroscopy , 2009, 0907.1236.

[65]  S. Veilleux,et al.  SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS , 2009, 0905.1577.

[66]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[67]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[68]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[69]  D. Calzetti,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[70]  R. Meijerink,et al.  Irradiated ISM: Discriminating between Cosmic Rays and X-Rays , 2006, astro-ph/0609184.

[71]  K. Kohno,et al.  Millimeter Interferometric Investigations of the Energy Sources of Three Ultraluminous Infrared Galaxies, UGC 5101, Markarian 273, and IRAS 17208−0014, Based on HCN-to-HCO+ Ratios , 2006, astro-ph/0602227.

[72]  L. Ho,et al.  A DEEP HUBBLE SPACE TELESCOPE H-BAND IMAGING SURVEY OF MASSIVE GAS-RICH MERGERS. II. THE QUEST QSOs , 2006, 0906.3157.

[73]  R. Maiolino,et al.  Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy , 2005, astro-ph/0510282.

[74]  Nrl,et al.  Infrared 3-4 μm Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies , 2005, astro-ph/0509861.

[75]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[76]  R. Meijerink,et al.  Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code , 2005, astro-ph/0502454.

[77]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[78]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[79]  R. Genzel,et al.  Gas near active galactic nuclei: A search for the 4.7micron CO band , 2004, astro-ph/0409123.

[80]  M. Burgdorf,et al.  Fire and Ice: Spitzer Infrared Spectrograph (IRS) Mid-Infrared Spectroscopy of IRAS F00183–7111 , 2004 .

[81]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[82]  G. Palumbo,et al.  An XMM-Newton hard X-ray survey of ultraluminous infrared galaxies , 2003, astro-ph/0304529.

[83]  L. Colina,et al.  INTEGRAL Spectroscopy of IRAS 17208–0014: Implications for the Evolutionary Scenarios of Ultraluminous Infrared Galaxies , 2003, astro-ph/0304138.

[84]  P. Maloney,et al.  3.1 Micron H2O Ice Absorption in LINER-Type Ultraluminous Infrared Galaxies with Cool Far-Infrared Colors: The Centrally Concentrated Nature of Their Deeply Buried Energy Sources , 2003, astro-ph/0302044.

[85]  E. Momjian,et al.  Very Long Baseline Array Continuum and H I Absorption Observations of the Ultraluminous Infrared Galaxy IRAS 17208–0014 , 2002, astro-ph/0212091.

[86]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[87]  L. Colina,et al.  Ultraluminous Infrared Galaxies: Mergers of Sub-L* Galaxies? , 2001 .

[88]  L. Colina,et al.  Ultraluminous Infrared Galaxies: Atlas of Near-Infrared Images , 2001, astro-ph/0108261.

[89]  Z. Deng,et al.  Statistical Properties of Ultraluminous IRAS Galaxies from an HST Imaging Survey , 2001, astro-ph/0104296.

[90]  S.J.Maddox,et al.  The PSCz Catalogue , 2000, astro-ph/0001117.

[91]  M. Rieke,et al.  NICMOS Imaging of Infrared-Luminous Galaxies , 1999, astro-ph/9912246.

[92]  L. Colina,et al.  Evidence for Multiple Mergers among Ultraluminous Infrared Galaxies: Remnants of Compact Groups? , 1999, The Astrophysical journal.

[93]  J. Maza,et al.  Southern ultraluminous infrared galaxies: an optical and infrared database , 1997 .

[94]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[95]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[96]  G. Neugebauer,et al.  Visual and Near-Infrared Imaging of Ultraluminous Infrared Galaxies: The IRAS 2 Jy Sample , 1996 .

[97]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[98]  S. Veilleux,et al.  Optical Spectroscopy of Luminous Infrared Galaxies II. Analysis of the Nuclear and long-Slit Data , 1995 .

[99]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[100]  D. Menzel,et al.  Physical Processes in Gaseous Nebulae. III. The Balmer Decrement. , 1938 .

[101]  R. Genzel,et al.  Accepted for publication in the Astrophysical Journal Letters Mid-infrared and optical spectroscopy of ultraluminous infrared galaxies: A comparison 1 , 1999 .

[102]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .