Integers without large prime factors

© Université Bordeaux 1, 1993, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[1]  Trevor D. Wooley,et al.  Large improvements in Waring's problem , 1992 .

[2]  Antal Balog,et al.  The distribution of smooth numbers in arithmetic progressions , 1992 .

[3]  G. Harman Short intervals containing numbers without large prime factors , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Ferrell S. Wheeler Two differential-difference equations arising in number theory , 1990 .

[5]  P. Erdos,et al.  On the greatest prime factor of $prod^{x}_{k=1}f(k)$ , 1990 .

[6]  É. Fouvry,et al.  Diviseurs de Titchmarsh des entiers sans grand facteur premier , 1990 .

[7]  P. Erdös,et al.  On Arithmetic Functions Involving Consecutive Divisors , 1990 .

[8]  C. Stewart,et al.  Some Ramanujan-Nagell equations with many solutions , 1990 .

[9]  Eric Saias,et al.  Sur le nombre des entiers sans grand facteur premier , 1989 .

[10]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[11]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[12]  É. Fouvry,et al.  On the switching principle in sieve theory. , 1986 .

[13]  Adolf Hildebrand,et al.  On integers free of large prime factors , 1986 .

[14]  F. Thaine On the first case of Fermat's last theorem , 1985 .

[15]  G. Tenenbaum Sur les entiers sans grand facteur premier. , 1985 .

[16]  I. Vinogradov On a Bound for the Least n th Power Non-Residue , 1985 .

[17]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[18]  Krishnaswami Alladi,et al.  On an additive arithmetic function. , 1977 .

[19]  J. Selfridge,et al.  Consecutive integers with no large prime factors , 1976, Journal of the Australian Mathematical Society.

[20]  Y. Motohashi An induction principle for the generalization of Bombieri's prime number theorem , 1976 .

[21]  S. Uchiyama On the difference between consecutive prime numbers , 1975 .

[22]  Patrick Billingsley,et al.  On the distribution of large prime divisors , 1972 .

[23]  Polynomial values with small prime divisors , 1971 .

[24]  H. Halberstam,et al.  Mean value theorems for a class of arithmetic functions , 1971 .

[25]  Veikko Ennola,et al.  On numbers with small prime divisors , 1969 .

[26]  K. F. Roth,et al.  On the Gaps between Consecutive k‐Free Integers , 1951 .

[27]  C. P. Hubbard,et al.  A Note on the , 1951 .

[28]  V. Ramaswami On the number of positive integers less than $x$ and free of prime divisors greater than $x^c$ , 1949 .

[29]  S. Chowla,et al.  On the Largest Prime Divisors of Numbers , 1947 .

[30]  Paul Erdös,et al.  On the normal number of prime factors of p-1 and some related problems concerning euler's o/-function , 1935 .

[31]  K. Dickman On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .

[32]  Trygve Nagel Généralisation d'un théorème de Tchebycheff , 1921 .