Third Order Accurate Non-Polynomial Reconstruction on Rectangular and Triangular Meshes
暂无分享,去创建一个
[1] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[2] Antonio Marquina,et al. Capturing Shock Reflections , 1996 .
[3] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[4] Susana Serna,et al. A Class of Extended Limiters Applied to Piecewise Hyperbolic Methods , 2006, SIAM J. Sci. Comput..
[5] Jianxian Qiu,et al. On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .
[6] Robert Artebrant,et al. Limiter-Free Third Order Logarithmic Reconstruction , 2006, SIAM J. Sci. Comput..
[7] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[8] Chi-Wang Shu,et al. Anti-diffusive flux corrections for high order finite difference WENO schemes , 2005 .
[9] O. Friedrich,et al. Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .
[10] H. Joachim Schroll,et al. A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes , 2006, J. Sci. Comput..
[11] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[12] Chaowei Hu,et al. No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .
[13] Robert Artebrant,et al. Conservative Logarithmic Reconstructions and Finite Volume Methods , 2005, SIAM J. Sci. Comput..
[14] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[15] Antonio Marquina,et al. Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..