Third Order Accurate Non-Polynomial Reconstruction on Rectangular and Triangular Meshes

This paper presents a finite volume scheme on rectangular and triangular meshes based on a third order accurate logarithmic reconstruction. Several numerical experiments, including the Euler equations for compressible gas dynamics, illustrate the high resolution and non-oscillatory properties of the new scheme

[1]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[2]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[3]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[4]  Susana Serna,et al.  A Class of Extended Limiters Applied to Piecewise Hyperbolic Methods , 2006, SIAM J. Sci. Comput..

[5]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[6]  Robert Artebrant,et al.  Limiter-Free Third Order Logarithmic Reconstruction , 2006, SIAM J. Sci. Comput..

[7]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[8]  Chi-Wang Shu,et al.  Anti-diffusive flux corrections for high order finite difference WENO schemes , 2005 .

[9]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[10]  H. Joachim Schroll,et al.  A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes , 2006, J. Sci. Comput..

[11]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[12]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[13]  Robert Artebrant,et al.  Conservative Logarithmic Reconstructions and Finite Volume Methods , 2005, SIAM J. Sci. Comput..

[14]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[15]  Antonio Marquina,et al.  Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..