Molecular and Neural Functions of Rai1, the Causal Gene for Smith-Magenis Syndrome

[1]  L. Vallée,et al.  Smith-Magenis syndrome , 2019, Definitions.

[2]  Baoji Xu,et al.  Neurotrophic factor control of satiety and body weight , 2016, Nature Reviews Neuroscience.

[3]  B. Barak,et al.  Neurobiology of social behavior abnormalities in autism and Williams syndrome , 2016, Nature Neuroscience.

[4]  G. Fishell,et al.  Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops , 2016, Neuron.

[5]  H. Zoghbi,et al.  Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes , 2015, Neuron.

[6]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[7]  Michael M. Halassa,et al.  Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice , 2015, Nature.

[8]  Guoping Feng,et al.  Modeling psychiatric disorders for developing effective treatments , 2015, Nature Medicine.

[9]  G. Liao,et al.  Discrete BDNF Neurons in the Paraventricular Hypothalamus Control Feeding and Energy Expenditure. , 2015, Cell metabolism.

[10]  R. Kooy,et al.  The GABAA Receptor as a Therapeutic Target for Neurodevelopmental Disorders , 2015, Neuron.

[11]  A. Lüthi,et al.  Neuronal circuits for fear and anxiety , 2015, Nature Reviews Neuroscience.

[12]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[13]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[14]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[15]  W. Colmers Faculty Opinions recommendation of An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. , 2014 .

[16]  C. Barthélémy,et al.  Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions , 2014, Molecular Syndromology.

[17]  Benjamin R. Arenkiel,et al.  Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. , 2013, Cell metabolism.

[18]  T. Johansen,et al.  A Phylogenetic Study of SPBP and RAI1: Evolutionary Conservation of Chromatin Binding Modules , 2013, PloS one.

[19]  A. White,et al.  Metabolic pitfalls of CNS Cre-based technology. , 2013, Cell metabolism.

[20]  J. Lupski,et al.  Circadian abnormalities in mouse models of smith–magenis syndrome: Evidence for involvement of RAI1 , 2013, American journal of medical genetics. Part A.

[21]  L. Luo,et al.  Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations , 2013, Neuron.

[22]  Bernardo L. Sabatini,et al.  Excitatory/Inhibitory Synaptic Imbalance Leads to Hippocampal Hyperexcitability in Mouse Models of Tuberous Sclerosis , 2013, Neuron.

[23]  E. Colman,et al.  The FDA's assessment of two drugs for chronic weight management. , 2012, The New England journal of medicine.

[24]  Cary Fu,et al.  GABAergic interneuron development and function is modulated by the Tsc1 gene. , 2012, Cerebral cortex.

[25]  N. Friedman,et al.  Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response , 2012, PLoS biology.

[26]  Stephen R. Williams,et al.  Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. , 2012, American journal of human genetics.

[27]  J. Lupski,et al.  A Duplication CNV That Conveys Traits Reciprocal to Metabolic Syndrome and Protects against Diet-Induced Obesity in Mice and Men , 2012, PLoS genetics.

[28]  J. Sebat,et al.  CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics , 2012, Cell.

[29]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[30]  Mark F Bear,et al.  Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. , 2012, Cold Spring Harbor perspectives in biology.

[31]  T. Johansen,et al.  Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP. , 2012, The Biochemical journal.

[32]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[33]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[34]  Linh Vong,et al.  Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons , 2011, Neuron.

[35]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[36]  Stephen R. Williams,et al.  Rai1 haploinsufficiency causes reduced Bdnf expression resulting in hyperphagia, obesity and altered fat distribution in mice and humans with no evidence of metabolic syndrome. , 2010, Human molecular genetics.

[37]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[38]  N. Tommerup,et al.  A Functional Link between the Histone Demethylase PHF8 and the Transcription Factor ZNF711 in X-Linked Mental Retardation , 2010, Molecular cell.

[39]  J. Lupski,et al.  Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. , 2010, American journal of human genetics.

[40]  M. Hurles,et al.  Copy number variation in human health, disease, and evolution. , 2009, Annual review of genomics and human genetics.

[41]  Andrew Menzies,et al.  A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation , 2009, Nature Genetics.

[42]  H. Zoghbi,et al.  Failure of neuronal homeostasis results in common neuropsychiatric phenotypes , 2008, Nature.

[43]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[44]  M. Bucan,et al.  How much is too much? Phenotypic consequences of Rai1 overexpression in mice , 2008, European Journal of Human Genetics.

[45]  J. Lupski,et al.  Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1 heterozygous mice display minimal behavioral phenotypes. , 2007, Human molecular genetics.

[46]  J. Lupski,et al.  Gender, genotype, and phenotype differences in Smith–Magenis syndrome: a meta‐analysis of 105 cases , 2007, Clinical genetics.

[47]  B. Lowell,et al.  Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. , 2007, Cell metabolism.

[48]  Lorraine Potocki,et al.  Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. , 2007, American journal of human genetics.

[49]  Robert A. McGovern,et al.  Leptin Directly Activates SF1 Neurons in the VMH, and This Action by Leptin Is Required for Normal Body-Weight Homeostasis , 2006, Neuron.

[50]  Robert A. McGovern,et al.  Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure , 2005, Cell.

[51]  J. Lupski,et al.  Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith-Magenis syndrome. , 2005, Human molecular genetics.

[52]  M. Sofroniew,et al.  GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain , 2004, Nature Neuroscience.

[53]  C. Vlangos,et al.  Mutations in RAI1 associated with Smith–Magenis syndrome , 2003, Nature Genetics.

[54]  H. Onda,et al.  Astrocyte‐specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures , 2002, Annals of neurology.

[55]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[56]  J. Lupski,et al.  Hypercholesterolemia in children with Smith-Magenis syndrome: del (17)(p11.2p11.2) , 2002, Genetics in Medicine.

[57]  L. Parada,et al.  BDNF regulates eating behavior and locomotor activity in mice , 2000, The EMBO journal.

[58]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[59]  L. Tecott,et al.  Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene , 1998, Nature Medicine.

[60]  B. Finucane,et al.  Smith-Magenis syndrome. , 1997, Ophthalmology.

[61]  C McCluggage,et al.  Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2) , 1996, American journal of medical genetics.

[62]  David Julius,et al.  Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors , 1995, Nature.

[63]  J. Opitz,et al.  Interstitial deletion of (17)(p11.2p11.2) in nine patients. , 1986, American journal of medical genetics.

[64]  W. R. Ingram THE HYPOTHALAMUS , 1938, Ciba clinical symposia.

[65]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[66]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[67]  L. Shaffer,et al.  Molecular mechanism for duplication 17p11.2— the homologous recombination reciprocal of the Smith-Magenis microdeletion , 2000, Nature Genetics.