Development and evaluation of TWIST Dixon for dynamic contrast‐enhanced (DCE) MRI with improved acquisition efficiency and fat suppression

To develop a new pulse sequence called time‐resolved angiography with stochastic trajectories (TWIST) Dixon for dynamic contrast enhanced magnetic resonance imaging (DCE‐MRI).

[1]  D. Mitchell,et al.  Single breath‐hold multiarterial dynamic MRI of the liver at 3T using a 3D fat‐suppressed keyhole technique , 2008, Journal of magnetic resonance imaging : JMRI.

[2]  X Hu,et al.  Continuous Update with Random Encoding (CURE): A New Strategy for Dynamic Imaging , 1995, Magnetic resonance in medicine.

[3]  Natal A W van Riel,et al.  On the identifiability of pharmacokinetic parameters in dynamic contrast‐enhanced imaging , 2007, Magnetic resonance in medicine.

[4]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.

[5]  M V Knopp,et al.  Dynamic contrast-enhanced magnetic resonance imaging in oncology. , 2001, Topics in magnetic resonance imaging : TMRI.

[6]  Christian M Langton,et al.  Comparison of fat quantification methods: A phantom study at 3.0T , 2008, Journal of magnetic resonance imaging : JMRI.

[7]  Manojkumar Saranathan,et al.  Multiecho time‐resolved acquisition (META): A high spatiotemporal resolution dixon imaging sequence for dynamic contrast‐enhanced MRI , 2009, Journal of magnetic resonance imaging : JMRI.

[8]  James S Babb,et al.  Gadolinium-Enhanced Liver Magnetic Resonance Imaging Using a 2-Point Dixon Fat-Water Separation Technique: Impact Upon Image Quality and Lesion Detection , 2011, Journal of computer assisted tomography.

[9]  C. Kuhl Current status of breast MR imaging. Part 2. Clinical applications. , 2007, Radiology.

[10]  G. Pohost,et al.  Block Regional Interpolation Scheme for k‐Space (BRISK): A Rapid Cardiac Imaging Technique , 1995, Magnetic resonance in medicine.

[11]  L. Turnbull Dynamic contrast‐enhanced MRI in the diagnosis and management of breast cancer , 2009, NMR in biomedicine.

[12]  W. Kaiser,et al.  Resolving Arterial Phase in Dynamic Breast MRI using a Fast TWIST Acquisition during Injection Delay , 2010 .

[13]  G. Hortobagyi,et al.  Fast three‐dimensional dual echo dixon technique improves fat suppression in breast MRI , 2010, Journal of magnetic resonance imaging : JMRI.

[14]  B K Rutt,et al.  Temporal sampling requirements for the tracer kinetics modeling of breast disease. , 1998, Magnetic resonance imaging.

[15]  Wenmiao Lu,et al.  Phase and amplitude correction for multi‐echo water–fat separation with bipolar acquisitions , 2010, Journal of magnetic resonance imaging : JMRI.

[16]  F Schick Simultaneous highly selective MR water and fat imaging using a simple new type of spectral‐spatial excitation , 1998, Magnetic resonance in medicine.

[17]  Elizabeth A Morris,et al.  Diagnostic breast MR imaging: current status and future directions. , 2010, Magnetic resonance imaging clinics of North America.

[18]  Qun Chen,et al.  Optimal k‐space sampling for dynamic contrast‐enhanced MRI with an application to MR renography , 2009, Magnetic resonance in medicine.

[19]  D. Plewes,et al.  Effect of Gd‐DTPA induCED susceptibility on single‐point dixon fat/water separation , 2008, Magnetic resonance in medicine.

[20]  Priti Balchandani,et al.  Fat suppression for 1H MRSI at 7T using spectrally selective adiabatic inversion recovery , 2008, Magnetic resonance in medicine.

[21]  Scott B Reeder,et al.  Water–fat separation with bipolar multiecho sequences , 2008, Magnetic resonance in medicine.

[22]  J. J. van Vaals,et al.  “Keyhole” method for accelerating imaging of contrast agent uptake , 1993, Journal of magnetic resonance imaging : JMRI.

[23]  H. Eggers,et al.  Dual‐echo Dixon imaging with flexible choice of echo times , 2011, Magnetic resonance in medicine.

[24]  Kyle J Myers,et al.  An anthropomorphic phantom for quantitative evaluation of breast MRI. , 2011, Medical physics.

[25]  G P Liney,et al.  A Simple and Realistic Tissue‐Equivalent Breast Phantom for MRI , 1999, Journal of magnetic resonance imaging : JMRI.

[26]  S. Reeder,et al.  Fat and water magnetic resonance imaging , 2010, Journal of magnetic resonance imaging : JMRI.

[27]  B. Hamm,et al.  Contrast‐enhanced magnetic resonance angiography of the lower extremities: Standard‐dose vs. high‐dose gadodiamide injection , 2005, Journal of magnetic resonance imaging : JMRI.

[28]  J. Pauly,et al.  Simultaneous spatial and spectral selective excitation , 1990, Magnetic resonance in medicine.

[29]  J Paul Finn,et al.  Time-resolved MR angiography in the evaluation of central thoracic venous occlusive disease. , 2009, AJR. American journal of roentgenology.

[30]  G. Laub,et al.  3D Time-Resolved MR Angiography (MRA) of the Carotid Arteries with Time-Resolved Imaging with Stochastic Trajectories: Comparison with 3D Contrast-Enhanced Bolus-Chase MRA and 3D Time-Of-Flight MRA , 2008, American Journal of Neuroradiology.

[31]  C. Kuhl The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. , 2007, Radiology.

[32]  S. Reeder,et al.  T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: Validation in a fat‐water‐SPIO phantom , 2009, Journal of magnetic resonance imaging : JMRI.

[33]  Thomas E Yankeelov,et al.  Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. , 2007, Current medical imaging reviews.

[34]  J Hennig,et al.  Benefits and pitfalls of keyhole imaging, especially in first‐pass perfusion studies , 2000, Journal of magnetic resonance imaging : JMRI.

[35]  R Frayne,et al.  Time‐resolved contrast‐enhanced 3D MR angiography , 1996, Magnetic resonance in medicine.