Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar

Abstract This study uses boreholes, ground temperature monitoring and ground-penetrating radar (GPR) in order to understand the internal structure and composition of a rock glacier in the upper Choapa valley, northern Chile. The rock glacier is a small valley-side feature, 200 m long and ranging between 3710 and 3780 ma.s.l. Two boreholes were drilled down to depths of 20 and 25 m, respectively, using the diamond drillhole technique. An ice-rock mixture was encountered in the boreholes, with heterogeneous ice content averaging 15-30%. Data from common-midpoint (CMP) and constant-offset (CO) GPR surveys acquired, respectively, near the boreholes and across the whole rock glacier were processed to highlight the internal stratigraphy and variations in the radar-wave velocity. The GPR profiles depict a rock glacier constituted of stacked and generally concordant layers, with a thickness ranging from 10 m in its upper part to ∼30m towards its terminus. The CMP analysis highlights radar-wave velocities of 0.13-0.16 m ns–1 in the first 20 m of the structure. Larger vertical and lateral velocity variations are highlighted from CO data, reflecting the heterogeneous composition of the rock glacier and the likely presence of unfrozen water in the structure. Given the average air temperature registered at the site (+0.5°C), the near-melting-point temperature registered in the boreholes over more than a year and the presence of locally high water content inferred from GPR data, it is thought that the permafrost in the rock glacier is currently degrading.

[1]  Lukas U. Arenson,et al.  Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples , 2005 .

[2]  D. Barsch Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments , 1996 .

[3]  L. Arenson,et al.  Unstable alpine permafrost , 2003 .

[4]  Alexander Brenning,et al.  Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile , 2005 .

[5]  R. Sillitoe Porphyry Copper Systems , 2010 .

[6]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[7]  Matthias Jakob,et al.  The significance of rock glaciers in the dry Andes – A discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010) , 2010 .

[8]  E. Bastida Sustainable investment in the minerals sector: re-examining the paradigm , 2007 .

[9]  J. Giardino,et al.  Engineering geomorphology of rock glaciers , 1999 .

[10]  B. Moorman Glacier-permafrost hydrological interconnectivity: Stagnation Glacier, Bylot Island, Canada , 2005, Geological Society, London, Special Publications.

[11]  Determining the Unfrozen Water Content in Soils by Time-Domain Reflectometry , 1984 .

[12]  I. Berthling Beyond confusion: Rock glaciers as cryo-conditioned landforms , 2011 .

[13]  O. Eisen,et al.  Electromagnetic wave speed in polar ice: validation of the common-midpoint technique with high-resolution dielectric-profiling and γ-density measurements , 2002, Annals of Glaciology.

[14]  Lukas U. Arenson,et al.  Borehole deformation measurements and internal structure of some rock glaciers in Switzerland , 2002 .

[15]  Geneviève Tenthorey Perennial névés and the hydrology of rock glaciers , 1992 .

[16]  Alan G. Green,et al.  Topographic migration of georadar data: Implications for acquisition and processing , 2000 .

[17]  H. Maurer,et al.  A new model for estimating subsurface ice content based on combined electrical and seismic data sets , 2011 .

[18]  J. P. Milana,et al.  Diferencias mecánicas e hídricas del permafrost en glaciares de rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en El Tapado, Chile , 2008 .

[19]  W. Haeberli On the characteristics and possible origins of ice in rock glacier permafrost. , 1996 .

[20]  W. Brian Whalley,et al.  Rock glaciers , 1987 .

[21]  C. H. Dix SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS , 1955 .

[22]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[23]  E. Brückl,et al.  Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations , 2007 .

[24]  Kosuke Noborio,et al.  Measurement of soil water content and electrical conductivity by time domain reflectometry: a review , 2001 .

[25]  J. Kohler,et al.  Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard , 2007 .

[26]  J. Ulrichs,et al.  Electrical properties of rocks and their significance for lunar radar observations , 1969 .

[27]  J. Milana,et al.  Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina , 2002 .

[28]  T. Gish,et al.  Soil Moisture Determination in Gravelly Soils with Time Domain Reflectometryd , 1989 .

[29]  F. Nelson,et al.  The zero‐curtain effect: Heat and mass transfer across an isothermal region in freezing soil , 1990 .

[30]  Hansruedi Maurer,et al.  Geophysical imaging of alpine rock glaciers , 2007, Journal of Glaciology.

[31]  J. Degenhardt,et al.  Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys , 2009 .

[32]  J. Giardino,et al.  GPR survey of a lobate rock glacier in Yankee Boy Basin, Colorado, USA , 2003, Geological Society, London, Special Publications.

[33]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[34]  F. Rejiba,et al.  Ground penetrating radar survey and stratigraphic interpretation of the Plan du Lac rock glaciers, Vanoise Massif, northern French Alps , 2008 .

[35]  Alexander Brenning,et al.  Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[36]  M. Hoelzle,et al.  The thermal regime of the active layer at the Murtèl rock glacier based on data from 2002 , 2004 .

[37]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[38]  W. Haeberli,et al.  SHALLOW CORE DRILLING AND BORE-HOLE MEASUREMENTS IN THE PERMAFROST OF AN ACTIVE ROCK GLACIER NEAR THE GRUBENGLETSCHER, WALLIS, SWISS ALPS , 1979 .

[39]  Michel Vauclin,et al.  Theoretical evidence for `Lichtenecker's mixture formulae' based on the effective medium theory , 1998 .

[40]  G. Osinski,et al.  The dielectric permittivity of terrestrial ground ice formations: Considerations for planetary exploration using ground‐penetrating radar , 2012 .

[41]  Jacek Jania,et al.  High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar , 1999 .

[42]  D. Dethier,et al.  Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA , 2011 .

[43]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[44]  T. Feuillet,et al.  Structure and genesis of the Thabor rock glacier (Northern French Alps) determined from morphological and ground-penetrating radar surveys , 2011 .

[45]  M. Y. E. Angillieri A preliminary inventory of rock glaciers at 30°S latitude, Cordillera Frontal of San Juan, Argentina , 2009 .

[46]  Kurt Roth,et al.  Use of dielectric spectroscopy to estimate ice content in frozen porous media , 2004 .

[47]  Harry M. Jol,et al.  Ground penetrating radar : theory and applications , 2009 .

[48]  G. Likens,et al.  Mountaintop Mining Consequences , 2010, Science.

[49]  K. R. Everett,et al.  Glossary of Permafrost and Related Ground-Ice Terms , 1989 .

[50]  N. Caine,et al.  Geochemistry and source waters of rock glacier outflow, Colorado Front Range , 2006 .

[51]  Kent M. Eskridge,et al.  Field-scale electrical conductivity mapping for delineating soil condition , 2001 .

[52]  J. Bradford Measuring Water Content Heterogeneity Using Multifold GPR with Reflection Tomography , 2008 .

[53]  J. Harper,et al.  Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA , 2009, Annals of Glaciology.

[54]  H. Christiansen,et al.  Avalanche‐derived rock glaciers in Svalbard , 2007 .

[55]  Alexander Brenning,et al.  Minería y glaciares rocosos: impactos ambientales, antecedentes políticos y legales, y perspectivas futuras , 2010 .

[56]  A. Green,et al.  Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes , 2006 .

[57]  Jane M. Soons,et al.  GEOCRYOLOGY, A SURVEY OF PERIGLACIAL PROCESSES AND ENVIRONMENTS , 1981 .

[58]  Amy J. Blatt,et al.  A New Model , 2015 .

[59]  J. Delleur The handbook of groundwater engineering , 1998 .