Quasi-cyclic generalized ldpc codes with low error floors

In this paper, a novel methodology for designing structured generalized LDPC (G-LDPC) codes is presented. The proposed design results in quasi-cyclic G-LDPC codes for which efficient encoding is feasible through shift-register-based circuits. The structure imposed on the bipartite graphs, together with the choice of simple component codes, leads to a class of codes suitable for fast iterative decoding. A pragmatic approach to the construction of G-LDPC codes is proposed. The approach is based on the substitution of check nodes in the protograph of a low-density parity-check code with stronger nodes based, for instance, on Hamming codes. Such a design approach, which we call LDPC code doping, leads to low-rate quasi-cyclic G-LDPC codes with excellent performance in both the error floor and waterfall regions on the additive white Gaussian noise channel.

[1]  G. Liva,et al.  Short low-error-floor Tanner codes with Hamming nodes , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[2]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[3]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[4]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[5]  F. Lemmermeyer Error-correcting Codes , 2005 .

[6]  Marco Chiani,et al.  Design and performance evaluation of some high-rate irregular low-density parity-check codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[7]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[8]  Jinghu Chen,et al.  A hybrid coding scheme for the Gilbert-Elliott channel , 2006, IEEE Transactions on Communications.

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[11]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[12]  Samuel J. Dolinar,et al.  Design and iterative decoding of networks of many small codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[13]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[14]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[15]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[16]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[17]  Yifei Zhang,et al.  Structured IRA Codes: Performance Analysis and Construction , 2007, IEEE Transactions on Communications.

[18]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[19]  Shu Lin,et al.  Construction of low-density parity-check codes by superposition , 2005, IEEE Transactions on Communications.

[20]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[21]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[22]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[23]  Marc P. C. Fossorier,et al.  Doubly Generalized LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[24]  Amir H. Banihashemi,et al.  A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[25]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[26]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[27]  R. M. Tanner On Quasi-Cyclic Repeat-Accumulate Codes , 2000 .

[28]  Sarah J. Johnson,et al.  Constraining LDPC degree distributions for improved error floor performance , 2006, IEEE Communications Letters.

[29]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[30]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[31]  William E. Ryan,et al.  On Generalized LDPC Codes and Their Decoders , 2007 .

[32]  L. Litwin,et al.  Error control coding , 2001 .

[33]  Li Ping,et al.  Low-rate turbo-Hadamard codes , 2001, IEEE Trans. Inf. Theory.

[34]  William E. Ryan,et al.  Design of Generalized LDPC codes and their decoders , 2007 .

[35]  Nenad Miladinovic,et al.  Generalized LDPC codes with Reed-Solomon and BCH codes as component codes for binary channels , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[36]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[37]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[38]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[39]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.