A design of ± 0.28 ppm temperature-compensated crystal oscillator in a 0.35 μm CMOS process

A high-performance temperature-compensated crystal oscillator (TCXO) is presented. This paper proposes a new temperature sensor with a Σ–Δ analog to digital converter, and a voltage-controlled crystal oscillator, respectively, using two sets of independent power supply. The presented TCXO is implemented in a 0.35 μm 2P3 M standard complementary metal-oxide semiconductor process at a power supply of 3.3 V, and the total power dissipation is 21 mW. Measurement results indicate that the designed TCXO achieves ± 16 ppm output frequency tuning range and 135, − 141 dBc/Hz phase noise at 1, 10 kHz frequency offset, respectively, by using a 40 MHz fundamental AT-cut crystal resonator. With the temperature compensation, the frequency deviation is within ± 0.28 ppm over − 40 °C to 85 °C.

[1]  V. von Kaenel,et al.  A 2.1 MHz Crystal Oscillator Time Base with a Current Consumption under 500 nA , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[2]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[3]  P. Andreani,et al.  On the use of MOS varactors in RF VCOs , 2000, IEEE Journal of Solid-State Circuits.

[4]  R. Achenbach,et al.  A digitally temperature-compensated crystal oscillator , 2000, IEEE Journal of Solid-State Circuits.

[5]  N. Wong,et al.  DC stability analysis of high-order, lowpass ΣΔ modulators with distinct unit circle NTF zeros , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[6]  Alfonso Carlosena,et al.  1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[7]  Georg Böck,et al.  The Design of Modern Microwave Oscillators for Wireless Applications : Theory and Optimization , 2005 .

[8]  Jerry Lin,et al.  A low-phase-noise 0.004-ppm/step DCXO with guaranteed monotonicity in the 90-nm CMOS process , 2005, IEEE Journal of Solid-State Circuits.

[9]  M. Okazaki,et al.  High performance VCXO with 622.08MHz Fundamental Quartz Crystal Resonator , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[10]  Thomas W. Kenny,et al.  Temperature-compensated high-stability silicon resonators , 2007 .

[11]  Shayan Farahvash,et al.  A Temperature-Compensated Digitally-Controlled Crystal Pierce Oscillator for Wireless Applications , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[12]  Frank van Diggelen,et al.  A-GPS: Assisted GPS, GNSS, and SBAS , 2009 .

[13]  Eric A. Vittoz,et al.  Low-Power Crystal and MEMS Oscillators - The Experience of Watch Developments , 2010, Integrated Circuits and Systems.

[14]  Andrea Conti,et al.  Interference and clock drift effects in UWB RFID systems using backscatter modulation , 2012, 2012 IEEE International Conference on Ultra-Wideband.

[15]  Jing Jin,et al.  A Wideband Voltage-Controlled Oscillator With Gain Linearized Varactor Bank , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[16]  Seng-Hsiang Kao,et al.  A miniature TCXO for GPS/GNSS application , 2014, Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications.

[17]  Kofi A. A. Makinwa,et al.  A 3 ppm 1.5 × 0.8 mm 2 1.0 µA 32.768 kHz MEMS-Based Oscillator , 2015, IEEE Journal of Solid-State Circuits.

[18]  Trong-Hieu Tran,et al.  A Low-ppm Digitally Controlled Crystal Oscillator Compensated by a New 0.19-mm2 Time-Domain Temperature Sensor , 2017, IEEE Sensors Journal.