A reversible carry-look-ahead adder using control gates

In principle, any reversible logic circuit can be built by using a single building block (having three logic inputs and three logic outputs). However, no simple synthesis tool is available to tell us how a particular logic operation has to be composed of such unit. We demonstrate that, for a flexible design, it is more advantageous to use a broad class of reversible gates, called control gates. They form a generalization of Feynman's three gates (i.e. the NOT, the CONTROLLED NOT, and the CONTROLLED CONTROLLED NOT). As an illustration, a 320-transistor reversible 4-bit carry-look-ahead adder in 0.8 µm c-MOS has been built.

[1]  Herbert Taub,et al.  Digital Circuits And Microprocessors , 1981 .

[2]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[3]  J. E. Chung,et al.  Weighing in on logic scaling trends , 2002 .

[4]  Alexis De Vos,et al.  Feynman's reversible logic gates, implemented in silicon. , 1999 .

[5]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[6]  Israel Koren Computer arithmetic algorithms , 1993 .

[7]  A. Adamski,et al.  Design of Reversible Logic Circuits by Means of Control Gates , 2000, PATMOS.

[8]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[9]  Alexis De Vos Introduction to r-MOS systems , 1996 .

[10]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[11]  Soo-Ik Chae,et al.  A 16-bit carry-lookahead adder using reversible energy recovery logic for ultra-low-energy systems , 1999 .

[12]  Chun-Keung Lo,et al.  An adiabatic differential logic for low-power digital systems , 1999 .

[13]  Bart Desoete,et al.  Equipartition Principles in Finite-Time Thermodynamics , 2000 .

[14]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[15]  Alexis De Vos,et al.  A Chip For Reversible Digital Computers , 1996 .

[16]  Birger Raa,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .

[17]  Dale P. Cruikshank,et al.  The Moons of Uranus, Neptune and Pluto. , 1985 .

[18]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[19]  R. Landauer Information is physical , 1991 .

[20]  Suhwan Kim,et al.  True single-phase energy-recovering logic for low-power, high-speed VLSI , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[21]  Leo Storme,et al.  Group Theoretical Aspects of Reversible Logic Gates , 1999, J. Univers. Comput. Sci..

[22]  Marios C. Papaefthymiou,et al.  Pipelined DSP design with a true single-phase energy-recovering logic style , 1999, Proceedings IEEE Alessandro Volta Memorial Workshop on Low-Power Design.

[23]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.