Uniqueness Guarantee of Solutions of Tensor Tubal-Rank Minimization Problem

This letter considers the recovery of a low-tubal-rank tensor from incomplete linear observations. It is shown that the unknown tensor <inline-formula><tex-math notation="LaTeX">$\boldsymbol{\mathcal {Z}}\in \mathbb {R}^{n_{1} \times n_{2} \times n_{3}}$</tex-math></inline-formula> of tubal-rank <inline-formula><tex-math notation="LaTeX">$r$</tex-math></inline-formula> can be reconstructed as a unique solution of a tractable method — tensor nuclear norm (TNN) minimization, provided that the number of Gaussian observations <inline-formula><tex-math notation="LaTeX">$m\geq 3r(n_{1} + n_{2} - r)n_{3}+1$</tex-math></inline-formula>. In this work, we examine the fundamental question of the minimal number of linear observations needed to reconstruct the tensor <inline-formula><tex-math notation="LaTeX">$\boldsymbol{\mathcal {Z}}$</tex-math></inline-formula> from these observations, regardless of the practicality of the reconstruction scheme. Consequently, we provide two benchmark results so that different reconstruction schemes including TNN minimization can be compared to each other. Specifically, we conclude that <inline-formula><tex-math notation="LaTeX">$m\geq 2r(n_{1} + n_{2} - 2r)n_{3}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$m\geq r(n_{1} + n_{2} - r)n_{3}+1$</tex-math></inline-formula> Gaussian observations are necessary and sufficient to guarantee uniform recovery and nonuniform recovery using tensor tubal-rank minimization method, respectively.

[1]  M. Kilmer,et al.  Tensor-Tensor Products with Invertible Linear Transforms , 2015 .

[2]  Laurence T. Yang,et al.  A Secure High-Order Lanczos-Based Orthogonal Tensor SVD for Big Data Reduction in Cloud Environment , 2019, IEEE Transactions on Big Data.

[3]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[4]  M. Kilmer,et al.  Factorization strategies for third-order tensors , 2011 .

[5]  Lei Huang,et al.  Orthogonal tubal rank-1 tensor pursuit for tensor completion , 2019, Signal Process..

[6]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[7]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[8]  Gangyao Kuang,et al.  Hyperspectral Image Restoration Using Low-Rank Tensor Recovery , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Yonina C. Eldar,et al.  Uniqueness conditions for low-rank matrix recovery , 2011, Optical Engineering + Applications.

[10]  Eric L. Miller,et al.  Tensor-Based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography , 2013, IEEE Transactions on Image Processing.

[11]  Shuicheng Yan,et al.  Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements , 2018, IJCAI.

[12]  Lei Huang,et al.  Tensor Completion via Generalized Tensor Tubal Rank Minimization Using General Unfolding , 2018, IEEE Signal Processing Letters.

[13]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[14]  Wei Liu,et al.  Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Xiaodong Wang,et al.  Low-Tubal-Rank Tensor Completion Using Alternating Minimization , 2016, IEEE Transactions on Information Theory.

[16]  Misha Elena Kilmer,et al.  Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..

[17]  Hao Kong,et al.  t-Schatten-$p$ Norm for Low-Rank Tensor Recovery , 2018, IEEE Journal of Selected Topics in Signal Processing.

[18]  Sudhish N. George,et al.  Denoising of Rician corrupted 3D magnetic resonance images using tensor-SVD , 2018, Biomed. Signal Process. Control..

[19]  Qi Xie,et al.  Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Zemin Zhang,et al.  Exact Tensor Completion Using t-SVD , 2015, IEEE Transactions on Signal Processing.

[21]  Qiang Jiang,et al.  Robust Low-Tubal-Rank Tensor Completion via Convex Optimization , 2019, IJCAI.

[22]  Andrzej Cichocki,et al.  Total Variation Regularized Tensor RPCA for Background Subtraction From Compressive Measurements , 2015, IEEE Transactions on Image Processing.

[23]  Misha Elena Kilmer,et al.  Novel Methods for Multilinear Data Completion and De-noising Based on Tensor-SVD , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Andong Wang,et al.  Generalized Dantzig Selector for Low-tubal-rank Tensor Recovery , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Jianjun Wang,et al.  RIP-based performance guarantee for low-tubal-rank tensor recovery , 2018, J. Comput. Appl. Math..

[26]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[27]  John M. Lee Introduction to Smooth Manifolds , 2002 .