Phylogenomic Analyses Support Traditional Relationships within Cnidaria

Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.

[1]  Samuel H. Church,et al.  Automation and Evaluation of the SOWH Test with SOWHAT , 2014, bioRxiv.

[2]  G. Giribet,et al.  Animal Phylogeny and Its Evolutionary Implications , 2014 .

[3]  Samuel H. Church,et al.  Automation and Evaluation of the SOWH Test of Phylogenetic Topologies with SOWHAT , 2014 .

[4]  A. Grajales,et al.  Hidden among Sea Anemones: The First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) Reveals a Novel Group of Hexacorals , 2014, PloS one.

[5]  A. Morandini,et al.  Fast-Evolving Mitochondrial DNA in Ceriantharia: A Reflection of Hexacorallia Paraphyly? , 2014, PloS one.

[6]  Felipe Zapata,et al.  Agalma: an automated phylogenomics workflow , 2013, BMC Bioinformatics.

[7]  Daniel Stubbs,et al.  PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. , 2013, Systematic biology.

[8]  Alexandros Stamatakis,et al.  Novel Parallelization Schemes for Large-Scale Likelihood-based Phylogenetic Inference , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[9]  A. Collins,et al.  Phylogenetic placement of Hydra and relationships within Aplanulata (Cnidaria: Hydrozoa). , 2013, Molecular phylogenetics and evolution.

[10]  A. Collins,et al.  Cnidarian phylogenetic relationships as revealed by mitogenomics , 2013, BMC Evolutionary Biology.

[11]  Simon P. Wilson,et al.  The Magnitude of Global Marine Species Diversity , 2012, Current Biology.

[12]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[13]  P. Cartwright,et al.  A Novel Mode of Colony Formation in a Hydrozoan through Fusion of Sexually Generated Individuals , 2012, Current Biology.

[14]  T. Lotan,et al.  A Modified View on Octocorals: Heteroxenia fuscescens Nematocysts Are Diverse, Featuring Both an Ancestral and a Novel Type , 2012, PloS one.

[15]  Marymegan Daly,et al.  Morphology, distribution, and evolution of apical structure of nematocysts in hexacorallia , 2012, Journal of morphology.

[16]  Y. Won,et al.  Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. , 2012, Molecular phylogenetics and evolution.

[17]  J. Woo,et al.  A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution , 2011, Nature communications.

[18]  S. Degnan,et al.  A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function , 2011, BMC Evolutionary Biology.

[19]  Bernard M. E. Moret,et al.  Phylogenetic Inference , 2011, Encyclopedia of Parallel Computing.

[20]  S. France,et al.  Molecular phylogenetic insights into the evolution of Octocorallia: a review. , 2010, Integrative and comparative biology.

[21]  P. Cartwright,et al.  Character evolution in Hydrozoa (phylum Cnidaria). , 2010, Integrative and comparative biology.

[22]  Corinne Da Silva,et al.  Phylogenomics Revives Traditional Views on Deep Animal Relationships , 2009, Current Biology.

[23]  M. Manuel Early evolution of symmetry and polarity in metazoan body plans. , 2009, Comptes rendus biologies.

[24]  A. Collins,et al.  Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) , 2008, Journal of the Marine Biological Association of the United Kingdom.

[25]  Marymegan Daly,et al.  The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus , 2007 .

[26]  A. Collins,et al.  Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. , 2007, Integrative and comparative biology.

[27]  A. Collins,et al.  Exceptionally Preserved Jellyfishes from the Middle Cambrian , 2007, PloS one.

[28]  S. France,et al.  A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. , 2006, Molecular phylogenetics and evolution.

[29]  B. Schierwater,et al.  Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. , 2006, Systematic biology.

[30]  A. Collins,et al.  Reassessment of the phylogenetic position of conulariids (?Ediacaran‐Triassic) within the subphylum medusozoa (phylum cnidaria) , 2006 .

[31]  C. Dunn Complex colony‐level organization of the deep‐sea siphonophore Bargmannia elongata (Cnidaria, Hydrozoa) is directionally asymmetric and arises by the subdivision of pro‐buds , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[32]  C. Dunn,et al.  Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. , 2005, Systematic biology.

[33]  A. Collins,et al.  Cladistic analysis of Medusozoa and cnidarian evolution , 2005 .

[34]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[35]  Marymegan Daly,et al.  Systematics of the Hexacorallia (Cnidaria: Anthozoa) , 2003 .

[36]  A. Collins Phylogeny of Medusozoa and the evolution of cnidarian life cycles , 2002 .

[37]  B. Rho,et al.  A phylogenetic study of the Anthozoa (phylum Cnidaria) based on morphological and molecular characters , 2001, Coral Reefs.

[38]  E. Berntson,et al.  Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequences , 2001 .

[39]  E. Berntson,et al.  Phylogenetic relationships within the class Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. , 1999, Molecular phylogenetics and evolution.

[40]  D. Miller,et al.  Internal and external relationships of the Cnidaria : implications of primary and predicted secondary structure of the 5'–end of the 23S–like rDNA , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  J. Song,et al.  Systematic relationship of the anthozoan orders based on the partial nuclear 18S rDNA sequences , 1997 .

[42]  T. Kocher,et al.  DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). , 1996, Molecular marine biology and biotechnology.

[43]  R. DeSalle,et al.  Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. , 1995, Molecular biology and evolution.

[44]  D. Miller,et al.  Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5'-end of the 28S rDNA. , 1995, Molecular phylogenetics and evolution.

[45]  R. Okimoto,et al.  Mitochondrial Genomes of Anthozoa (Cnidaria) , 1995 .

[46]  B. Schierwater,et al.  Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Muscatine,et al.  Coelenterate biology: Reviews and new perspectives , 1974 .

[48]  B. Werner NEW INVESTIGATIONS ON SYSTEMATICS AND EVOLUTION OF THE CLASS SCYPHOZOA AND THE PHYLUM CNIDARIA , 1973 .

[49]  W. Ausich,et al.  Treatise on Invertebrate Paleontology , 1965 .

[50]  R. Moore,et al.  Treatise on Invertebrate Paleontology , 1950 .

[51]  L. Hyman The Invertebrates: Protozoa Through Ctenophora , 1940 .