Time-dependent analysis of cable nets using a modified nonlinear force-density method and creep theory

Abstract The stiffness of cable nets is conditioned by their states of prestress. The decrease of prestress due to creep of cables determines the serviceability and load bearing capacity of the cable net. In this paper, a modified force density method for a time-dependent non-linear static analysis of pre-stressed cable nets based on the application of creep theory is presented. Creep constitutive equations are directly used for the adjustment of cable lengths. The accuracy and efficiency of the formulation are assessed by comparison with available results obtained by other authors using different numerical approaches. The applicability of this method is demonstrated.

[1]  Manolis Papadrakakis,et al.  A method for the automatic evaluation of the dynamic relaxation parameters , 1981 .

[2]  D. S. Wakefield Engineering analysis of tension structures: theory and practice , 1999 .

[3]  Pere Roca,et al.  A new deformable catenary element for the analysis of cable net structures , 2006 .

[4]  Zdeněk Sobotka,et al.  Rheology of materials and engineering structures , 1984 .

[5]  Alan Shu Khen Kwan,et al.  Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements , 2005 .

[6]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[7]  Hyo Seon Park,et al.  A unique feasible mode of prestress design for cable domes , 2012 .

[8]  René Motro,et al.  The surface stress density method as a form-finding tool for tensile membranes , 1998 .

[9]  Makoto Ohsaki,et al.  Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming , 2002 .

[10]  Stanislav Kmet,et al.  Time-dependent analysis and simulation-based reliability assessment of suspended cables with rheological properties , 2007, Adv. Eng. Softw..

[11]  Jingyao Zhang,et al.  Adaptive force density method for form-finding problem of tensegrity structures , 2006 .

[12]  Pier Giorgio Malerba,et al.  Flexible bridge decks suspended by cable nets. A constrained form finding approach , 2013 .

[13]  Michael Barnes Form and stress engineering of tension structures , 1994 .

[14]  Barry Hilary Valentine Topping,et al.  Parallel computation schemes for dynamic relaxation , 1994 .

[15]  P. Gill,et al.  Algebraic tensegrity form-finding , 2005 .

[16]  Luisa María Gil-Martín,et al.  Symmetry preserving in Topological Mapping for tension structures , 2013 .

[17]  A. Carnicero,et al.  The influence of cable slackening on the stiffness computation of railway overheads , 2008 .

[18]  W. J. Lewis,et al.  Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs , 1984 .

[19]  A. Kwan A new approach to geometric nonlinearity of cable structures , 1998 .

[20]  L. Gründig,et al.  The design of wide-span roof structures using micro-computers , 1988 .

[21]  D. A. Gasparini,et al.  Geometrically Nonlinear Static Behavior of Cable Structures , 2002 .

[22]  Bogdan Husiar,et al.  Analiza reologiczna siatek wykonanych z lin stalowych , 1985 .

[23]  X. Q. Luo,et al.  Form-finding of a mixed structure with cable nets and tubular trusses , 2012 .

[24]  Stanislav Kmet,et al.  Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory , 2013 .

[25]  Charis J. Gantes,et al.  Nonlinear dynamic behavior of saddle-form cable nets under uniform harmonic load , 2011 .

[26]  Paulo M. Pimenta,et al.  The natural force density method for the shape finding of taut structures , 2008 .

[27]  Leopoldo Greco,et al.  A procedure for the static analysis of cable structures following elastic catenary theory , 2014 .

[28]  S. Kmet,et al.  Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations , 2004 .

[29]  H. Murakami Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis , 2001 .

[30]  H. A. A. Buchholdt,et al.  An Introduction to Cable Roof Structures , 1985 .

[31]  Simon D. Guest,et al.  A new approach to the analytical and numerical form-finding of tensegrity structures , 2013 .

[32]  E. Gaylord,et al.  Design of Steel Structures , 1972 .

[33]  R. D. Wood A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes , 2002 .

[34]  Leopoldo Greco,et al.  On the force density method for slack cable nets , 2012 .

[35]  H. Murakami Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion , 2001 .

[36]  Stanislav Kmet,et al.  Nonlinear Analytical Solution for Cable Truss , 2006 .

[37]  Paz Morer,et al.  A multi-step force-density method and surface-fitting approach for the preliminary shape design of tensile structures , 2007 .

[38]  S. Kmet,et al.  Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study , 2004 .

[39]  Simon D. Guest,et al.  The stiffness of prestressed frameworks: A unifying approach , 2006 .

[40]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[41]  W. J. Lewis,et al.  Tension Structures: Form and Behaviour , 2003 .

[42]  Tuanjie Li,et al.  Active shape adjustment of cable net structures with PZT actuators , 2013 .

[43]  Ph. Bouillard,et al.  Review: Multicriteria optimization of lightweight bridge structures with a constrained force density method , 2011 .

[44]  Bogdan Husiar,et al.  Dyskretna analiza modeli reologicznych , 1984 .

[45]  Giuseppe Ricciardi,et al.  Statics of elastic cables under 3D point forces , 2011 .

[46]  H. Schek The force density method for form finding and computation of general networks , 1974 .

[47]  Karel Rektorys,et al.  The method of discretization in time and partial differential equations , 1982 .

[48]  Peter Ivanyi,et al.  Computer Aided Design of Cable Membrane Structures , 2008 .

[49]  Hossein Rahami,et al.  Vibration analysis of regular structures by graph products: Cable networks , 2010 .

[50]  Ahmad Shooshtari,et al.  Nonlinear analysis of cable structures under general loadings , 2013 .

[51]  Aslam Kassimali,et al.  Strength of Cable Trusses Under Combined Loads , 1987 .

[52]  Pier Giorgio Malerba,et al.  An Extended Force Density Method for the form finding of cable systems with new forms , 2012 .

[53]  H. B. Jayaraman,et al.  A curved element for the analysis of cable structures , 1981 .