Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

[1]  T. Samaras,et al.  In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment , 2011 .

[2]  Joseph Wang,et al.  Biofunctionalization of Nanomaterials , 2011 .

[3]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[4]  Brian P. Timko,et al.  Remotely Triggerable Drug Delivery Systems , 2010, Advanced materials.

[5]  C. Kumar,et al.  Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[6]  F. Mohammad,et al.  Magnetic Gold Nanoshells: Step-wise Changing of Magnetism through Step-wise Biofunctionalization. , 2010, The journal of physical chemistry letters.

[7]  Fabian Kiessling,et al.  Nanotheranostics and image-guided drug delivery: current concepts and future directions. , 2010, Molecular pharmaceutics.

[8]  V. Herynek,et al.  Core–shell La1−xSrxMnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Juan L. Vivero-Escoto,et al.  Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery , 2010, Expert opinion on drug delivery.

[10]  Heng Huang,et al.  Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. , 2010, Nature nanotechnology.

[11]  J. Fraser Stoddart,et al.  Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. , 2010, Journal of the American Chemical Society.

[12]  R. Regmi,et al.  Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels , 2010 .

[13]  G. Lu,et al.  Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. , 2010, Angewandte Chemie.

[14]  James C. Davis,et al.  Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. , 2010, Biomaterials.

[15]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[16]  Toshinobu Yogo,et al.  High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. , 2010, ACS applied materials & interfaces.

[17]  Yu Zhang,et al.  Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices. , 2010, Small.

[18]  Wolfgang Schärtl,et al.  Current directions in core-shell nanoparticle design. , 2010, Nanoscale.

[19]  Raju V. Ramanujan,et al.  Modeling the performance of magnetic nanoparticles in multimodal cancer therapy , 2010 .

[20]  B. Jeyadevan Present status and prospects of magnetite nanoparticles-based hyperthermia , 2010 .

[21]  K. Sheng,et al.  SU‐GG‐J‐118: Geometrically Targeted Radiation Enhancer Using Semiconductive Nanoparticles , 2010 .

[22]  K. Iramina,et al.  Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule , 2010 .

[23]  G. Chow,et al.  Synthesis and properties of poly(d,l-lactide) drug carrier with maghemite nanoparticles , 2010 .

[24]  M. McHenry,et al.  Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia , 2010 .

[25]  Ralph Weissleder,et al.  Title: Self-assembled Multifunctional Fe/mgo Nanospheres for Magnetic Resonance Imaging and Self-assembled Multifunctional Fe/mgo Nanospheres for Magnetic Resonance Imaging and Hyperthermia , 2022 .

[26]  Y. Yamini,et al.  Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications , 2010 .

[27]  Warren S Warren,et al.  Molecular MRI for sensitive and specific detection of lung metastases , 2010, Proceedings of the National Academy of Sciences.

[28]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[29]  Robert Langer,et al.  Spatiotemporal controlled delivery of nanoparticles to injured vasculature , 2010, Proceedings of the National Academy of Sciences.

[30]  Á. Villanueva,et al.  Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles , 2009, 0907.3278.

[31]  V.,et al.  Core–shell La 1 − x Sr x MnO 3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia , 2010 .

[32]  Challa S. S. R. Kumar,et al.  Nanotechnology tools in pharmaceutical R&D , 2010 .

[33]  Piero Baglioni,et al.  Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field , 2010 .

[34]  Viktor Chikan,et al.  A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study , 2010, BMC Cancer.

[35]  A. Shelton,et al.  Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study , 2010, BMC Cancer.

[36]  S. Müller Magnetic fluid hyperthermia therapy for malignant brain tumors--an ethical discussion. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[37]  Tong Cai,et al.  Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility , 2009, Nanoscale research letters.

[38]  M. Anantharaman,et al.  Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties , 2009, Nanoscale research letters.

[39]  R. Langer,et al.  A magnetically triggered composite membrane for on-demand drug delivery. , 2009, Nano letters.

[40]  Antonio Villaverde,et al.  Biomedical applications of distally controlled magnetic nanoparticles. , 2009, Trends in biotechnology.

[41]  P. Chow,et al.  Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy , 2009, Nanotechnology.

[42]  G. Goglio,et al.  Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating , 2009, Nanotechnology.

[43]  Matthias Zeisberger,et al.  Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. , 2009, Journal of magnetism and magnetic materials.

[44]  Dong-lin Zhao,et al.  Preparation and inductive heating property of Fe3O4–chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia , 2009 .

[45]  Hui Zhang,et al.  A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release , 2009 .

[46]  Balachandran Jeyadevan,et al.  Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia , 2009 .

[47]  Shouheng Sun,et al.  Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles , 2009 .

[48]  T. Odom,et al.  Optical properties of anisotropic core-shell pyramidal particles. , 2009, The journal of physical chemistry. A.

[49]  M. McHenry,et al.  Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating , 2009 .

[50]  R. Sharma,et al.  Newer nanoparticles in hyperthermia treatment and thermometry , 2009 .

[51]  L. Lo,et al.  Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release , 2009, Nanotechnology.

[52]  M. Osinski,et al.  Magnetically Responsive Nanoparticles for Drug Delivery Applications Using Low Magnetic Field Strengths , 2009, IEEE Transactions on NanoBioscience.

[53]  B. Bagchi,et al.  Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. , 2009, The journal of physical chemistry. B.

[54]  Xin-bo Zhang,et al.  Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. , 2009, Journal of the American Chemical Society.

[55]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[56]  K. Ulbrich,et al.  Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. , 2009, Nano letters.

[57]  R. Costo,et al.  Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties. , 2009, 0901.3891.

[58]  Xiuqing Gong,et al.  Design and Fabrication of Magnetically Functionalized Core/Shell Microspheres for Smart Drug Delivery , 2009 .

[59]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[60]  L. V. Levkin,et al.  Solution to the bioheat equation for hyperthermia with La1−xAgyMnO3-δ nanoparticles: The effect of temperature autostabilization , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[61]  Yue-hua Guo,et al.  Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[62]  C. Kumar Mixed metal nanomaterials , 2009 .

[63]  Sébastien Vasseur,et al.  Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues , 2009 .

[64]  D. Nikles,et al.  Heating of Aqueous Dispersions Containing ${\hbox{MnFe}}_{2}{\hbox{O}}_{4}$ Nanoparticles by Radio-Frequency Magnetic Field Induction , 2009, IEEE Transactions on Magnetics.

[65]  C. Brazel Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release , 2009, Pharmaceutical Research.

[66]  San-Yuan Chen,et al.  Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[67]  C. Wilhelm,et al.  Optimizing magnetic nanoparticle design for nanothermotherapy. , 2008, Nanomedicine.

[68]  Hui Mao,et al.  Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. , 2008, Small.

[69]  Claire Wilhelm,et al.  The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells. , 2008, Biomaterials.

[70]  D. Nikles,et al.  Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia , 2008 .

[71]  J. Z. Hilt,et al.  Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[72]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[73]  B L V Prasad,et al.  Gold nanoparticle superlattices. , 2008, Chemical Society reviews.

[74]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[75]  Dean-Mo Liu,et al.  Core/Single‐Crystal‐Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism , 2008, Advanced materials.

[76]  C. Chien,et al.  FIB/TEM characterization of the composition and structure of core/shell Cu-Ni nanowires. , 2008, Nano letters.

[77]  C. Kumar,et al.  Investigation of Magnetic Nanoparticle−Polymer Composites for Multiple-controlled Drug Delivery , 2008 .

[78]  J. Benoit,et al.  Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia , 2008 .

[79]  R. Ivkov,et al.  The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia , 2008 .

[80]  Yu-Chuan Su,et al.  Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery , 2008, Biomedical microdevices.

[81]  Xin Wang,et al.  Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles , 2008 .

[82]  M. E. Williams,et al.  Controlling Transport and Chemical Functionality of Magnetic Nanoparticles , 2008 .

[83]  H. Honda,et al.  Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone , 2008, The Prostate.

[84]  J. Hafner,et al.  Shape-dependent plasmon resonances of gold nanoparticles , 2008 .

[85]  J. Bacri,et al.  Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[86]  M. El-Sayed,et al.  Can the Observed Changes in the Size or Shape of a Colloidal Nanocatalyst Reveal the Nanocatalysis Mechanism Type: Homogeneous or Heterogeneous? , 2008 .

[87]  H. Honda,et al.  Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles , 2008, Biomagnetic research and technology.

[88]  J. Cheon,et al.  Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. , 2008, Accounts of chemical research.

[89]  M. Torres-Lugo,et al.  Multifunctional magnetite nanoparticles coated with fluorescent thermo-responsive polymeric shells , 2008 .

[90]  M. McHenry,et al.  Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy , 2008 .

[91]  S. Grimaldi,et al.  Action of combined magnetic fields on aqueous solution of glutamic acid: the further development of investigations , 2008, Biomagnetic research and technology.

[92]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[93]  A. Neogi,et al.  Thermoresponsive Hydrogel Microvalve Based on Magnetic Nanoheaters for Microfluidics , 2008 .

[94]  Yong Zhang,et al.  USE OF CORE/SHELL STRUCTURED NANOPARTICLES FOR BIOMEDICAL APPLICATIONS , 2008 .

[95]  Dean-Mo Liu,et al.  Magnetic-sensitive silica nanospheres for controlled drug release. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[96]  Jean-Paul Fortin,et al.  Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles , 2008, European Biophysics Journal.

[97]  N. K. Prasad,et al.  Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2–xO3 synthesized by a single step process , 2007 .

[98]  Erkki Ruoslahti,et al.  Remotely Triggered Release from Magnetic Nanoparticles , 2007 .

[99]  Ying Li,et al.  Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[100]  Y. Lvov,et al.  Nanoshells for Drug Delivery , 2007 .

[101]  Vladimir N. Nikiforov,et al.  Magnetic induction hyperthermia , 2007 .

[102]  E. Dinjus,et al.  Surface modification of metallic Co nanoparticles , 2007 .

[103]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[104]  J. Bellare,et al.  Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles , 2007 .

[105]  Pallab Pradhan,et al.  Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[106]  A. Gaharwar,et al.  Layer-by-layer assembly of a magnetic nanoparticle shell on a thermoresponsive microgel core , 2007 .

[107]  F. Gazeau,et al.  Internal structure of magnetic endosomes , 2007, The European physical journal. E, Soft matter.

[108]  H. Honda,et al.  4‐S‐Cysteaminylphenol‐loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma , 2007, Cancer science.

[109]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[110]  K. Brown,et al.  Magnetic field heating study of Fe-doped Au nanoparticles , 2007 .

[111]  S. Dong,et al.  Electrochemical Designing of Au/Pt Core Shell Nanoparticles as Nanostructured Catalyst with Tunable Activity for Oxygen Reduction , 2007 .

[112]  Challa S. S. R. Kumar,et al.  Nanomaterials for medical diagnosis and therapy , 2007 .

[113]  B. Fubara,et al.  Hyperpolarized He MRI to Detect Lung Metastases Targeted by Magnetic Nanoparticles , 2007 .

[114]  E. Dinjus,et al.  Air‐Stable Co‐, Fe‐, and Fe/Co‐Nanoparticles and Ferrofluids , 2006 .

[115]  Dwight G Nishimura,et al.  FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents , 2006, Nature materials.

[116]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[117]  Sang Won Lee,et al.  Dependence of Frequency and Magnetic Field on Self-Heating Characteristics of NiFe$_2$O$_4$Nanoparticles for Hyperthermia , 2006, IEEE Transactions on Magnetics.

[118]  E. Roduner Nanoscopic Materials: Size-Dependent Phenomena , 2006 .

[119]  Takeshi Kobayashi,et al.  A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. , 2006, Cancer research.

[120]  J. Duarte,et al.  Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. , 2006, Toxicology.

[121]  Wole Soboyejo,et al.  LHRH-conjugated Magnetic Iron Oxide Nanoparticles for Detection of Breast Cancer Metastases , 2006, Breast Cancer Research and Treatment.

[122]  A Paul Alivisatos,et al.  Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. , 2006, Nano letters.

[123]  E. Dinjus,et al.  Air-stable Co-, Fe-, and Fe/Co-Nanoparticles and Ferrofluids , 2006 .

[124]  Rajeev Bansal,et al.  Thermal therapy, part 2: hyperthermia techniques. , 2006, Critical reviews in biomedical engineering.

[125]  Hiroyuki Honda,et al.  Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression , 2006, Cancer Immunology, Immunotherapy.

[126]  Challa S. S. R. Kumar,et al.  Biofunctionalization of nanomaterials , 2005 .

[127]  H. Honda,et al.  Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles , 2005, International journal of cancer.

[128]  H. Honda,et al.  Complete Regression of Hereditary Melanoma in a Mouse Model by Repeated Hyperthermia Using Magnetite Cationic Liposomes , 2005 .

[129]  Shiladitya Sengupta,et al.  Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system , 2005, Nature.

[130]  H. Honda,et al.  Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. , 2005, Journal of bioscience and bioengineering.

[131]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[132]  I. Lisiecki Size, shape, and structural control of metallic nanocrystals. , 2005, The journal of physical chemistry. B.

[133]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[134]  C. Kumar,et al.  The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles (invited) , 2005 .

[135]  P. Pradhan,et al.  Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications , 2005 .

[136]  V. D. Kuznetsov,et al.  Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia , 2005 .

[137]  Kyoung-Nam Kim,et al.  Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application , 2005 .

[138]  Dirk Schüler,et al.  Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools , 2005 .

[139]  Doina Bica,et al.  Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma , 2005 .

[140]  Y. Haik,et al.  Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications , 2005 .

[141]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[142]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[143]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[144]  H. Bagaria,et al.  Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[145]  Zonghuan Lu,et al.  Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[146]  D. Nikles,et al.  SELF-REGULATED MAGNETIC FLUID HYPERTHERMIA , 2005 .

[147]  J. Liu,et al.  One-step synthesis of FePt nanoparticles with tunable size. , 2004, Journal of the American Chemical Society.

[148]  T. Hyeon,et al.  Designed synthesis of atom-economical pd/ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. , 2004, Journal of the American Chemical Society.

[149]  H. Honda,et al.  Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma , 2004, Biomagnetic research and technology.

[150]  Paula Gould,et al.  Nanoparticles probe biosystems , 2004 .

[151]  Channakeshava,et al.  Biological effects of power frequency magnetic fields: Neurochemical and toxicological changes in developing chick embryos , 2004, Biomagnetic research and technology.

[152]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[153]  Zhong Lin Wang,et al.  Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles , 2004 .

[154]  G. Whitesides The 'right' size in nanobiotechnology , 2003, Nature Biotechnology.

[155]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[156]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[157]  Dhirendra Bahadur,et al.  Biomaterials and magnetism , 2003 .

[158]  H. Honda,et al.  Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes , 2003, Melanoma research.

[159]  H. Honda,et al.  Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles , 2003, Cancer Immunology, Immunotherapy.

[160]  M. Dewhirst,et al.  Summary, conclusions and recommendations: adverse temperature levels in the human body , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[161]  S. Loening,et al.  Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. , 2003, European urology.

[162]  Earl J. Bergey,et al.  DC Magnetic Field Induced Magnetocytolysis of Cancer Cells Targeted by LH-RH Magnetic Nanoparticles in vitro , 2002 .

[163]  N. A. Brusentsov,et al.  Magnetic fluid hyperthermia of the mouse experimental tumor , 2002 .

[164]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[165]  P. Vandenabeele,et al.  The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet , 2002, Cell Death and Differentiation.

[166]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[167]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[168]  C. Haberzettl Nanomedicine: destination or journey? , 2002 .

[169]  P. Wust,et al.  The cellular and molecular basis of hyperthermia. , 2002, Critical reviews in oncology/hematology.

[170]  B. S. Koo,et al.  The Induction of Hyperthermia in Rabbit Liver by means of Duplex Stainless Steel Thermoseeds , 2002, Korean journal of radiology.

[171]  C. Serna,et al.  Single‐Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties , 2001 .

[172]  Takeshi Kobayashi,et al.  Interstitial Hyperthermia Using Magnetite Cationic Liposomes Inhibit to Tumor Growth of VX-7 Transplanted Tumor in Rabbit Tongue , 2001 .

[173]  G M Whitesides,et al.  The once and future nanomachine. , 2001, Scientific American.

[174]  A. Greenwald Biological Performance of Materials. Fundamentals of Biocompatibility. 3rd ed. , 2001 .

[175]  M. Dewhirst,et al.  Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. , 2001, Cancer research.

[176]  P. Wust,et al.  Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[177]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[178]  Jun Yoshida,et al.  Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia , 2001 .

[179]  R. Issels,et al.  Hyperthermia in oncology. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[180]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[181]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[182]  Jun Yoshida,et al.  Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. , 1999, Japanese journal of cancer research : Gann.

[183]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[184]  E. Wissler,et al.  Pennes' 1948 paper revisited. , 1998, Journal of applied physiology.

[185]  R. Jain The next frontier of molecular medicine: Delivery of therapeutics , 1998, Nature Medicine.

[186]  Jun Yoshida,et al.  Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: Ex vivo Study , 1996, Japanese journal of cancer research : Gann.

[187]  P. Wust,et al.  Arrhenius analysis of the thermal response of human colonic adenocarcinoma cells in vitro using the multi-target, single-hit and the linear-quadratic model. , 1997, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[188]  P. Srivastava,et al.  A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. , 1995, Science.

[189]  D. Bozentka Biological performance of materials: fundamentals of biocompatibility , 1993 .

[190]  P. Wust,et al.  Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. , 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[191]  G K Svensson,et al.  Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. , 1993, International journal of radiation oncology, biology, physics.

[192]  P. Okunieff,et al.  Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. , 1989, Cancer research.

[193]  O. Dahl Interaction of hyperthermia and chemotherapy. , 1988, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[194]  J. Kost,et al.  Magnetically enhanced insulin release in diabetic rats. , 1987, Journal of biomedical materials research.

[195]  J. Kost,et al.  Magnetically controlled release systems: effect of polymer composition. , 1985, Journal of biomedical materials research.

[196]  E. Edelman,et al.  Regulation of drug release from polymer matrices by oscillating magnetic fields. , 1985, Journal of biomedical materials research.

[197]  J. Bull An update on the anticancer effects of a combination of chemotherapy and hyperthermia. , 1984, Cancer research.

[198]  J. Hayter,et al.  Structure Factor of a Magnetically Saturated Ferrofluid , 1982 .

[199]  H D Suit,et al.  Time-temperature relationship th hyperthermic treatment of malignant and normal tissue in vivo. , 1979, Cancer research.

[200]  W. Dewey,et al.  Radiosensitivity and recovery from radiation damage in cultured CHO cells exposed to hyperthermia at 42.5 or 45.5 degrees C. , 1979, Radiation Research.

[201]  R. T. Gordon,et al.  Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. , 1979, Medical hypotheses.

[202]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.