A novel method to characterize silica bodies in grasses

[1]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[2]  R. Evert Esau's Plant anatomy , 2016 .

[3]  E. Potma,et al.  Plant growth conditions alter phytolith carbon , 2015, Front. Plant Sci..

[4]  Jia-sen Wu,et al.  A Study of Phytolith-occluded Carbon Stock in Monopodial Bamboo in China , 2015, Scientific Reports.

[5]  A. Lux,et al.  New method for visualization of silica phytoliths in Sorghumbicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation , 2014, Planta.

[6]  Houyuan Lu,et al.  Early Mixed Farming of Millet and Rice 7800 Years Ago in the Middle Yellow River Region, China , 2012, PloS one.

[7]  Alisdair R Fernie,et al.  Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. , 2012, The New phytologist.

[8]  Chuan Wu,et al.  Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. , 2012, Chemosphere.

[9]  D. V. Hill,et al.  The transformation of phytolith morphology as the result of their exposure to high temperature , 2012, Microscopy research and technique.

[10]  D. V. Hill,et al.  Comparing dry ashing and wet oxidation methods. The case of the rice husk (Oryza sativa L.) , 2012, Microscopy research and technique.

[11]  S. Hartley,et al.  Interactive effects of plant-available soil silicon and herbivory on competition between two grass species. , 2011, Annals of botany.

[12]  A. Leaché,et al.  Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. , 2011, Nature communications.

[13]  Jining Chen,et al.  Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption , 2011, Biological Trace Element Research.

[14]  Xianmin Diao,et al.  Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis) , 2011, PloS one.

[15]  Kam‐biu Liu,et al.  Phytoliths Analysis for the Discrimination of Foxtail Millet (Setaria italica) and Common Millet (Panicum miliaceum) , 2009, PloS one.

[16]  A. R. Ennos,et al.  A novel mechanism by which silica defends grasses against herbivory. , 2008, Annals of botany.

[17]  Carole C Perry,et al.  Silica in plants: biological, biochemical and chemical studies. , 2007, Annals of botany.

[18]  M. Hodson,et al.  Silica in higher plants. , 2007, Ciba Foundation symposium.

[19]  A. R. Ennos,et al.  Grasses and the resource availability hypothesis: the importance of silica‐based defences , 2007 .

[20]  S. Hartley,et al.  Herbivore specific induction of silica-based plant defences , 2007, Oecologia.

[21]  Ki Woo Kim,et al.  Solid-state NMR Spectroscopy of Silicon-treated Rice with Enhanced Host Resistance against Blast , 2006, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[22]  D. Piperno,et al.  Dinosaurs Dined on Grass , 2005, Science.

[23]  L. Gallego,et al.  Phytolith assemblages in grasses native to central Argentina. , 2004, Annals of botany.

[24]  N. Bing,et al.  ON MORPHOLOGY AND MORPHOGENESIS OF SILICA BODIES IN BAMBUSA MULTIPLEX VAR. NANA , 2003 .

[25]  P. Rudall,et al.  Systematics and biology of silica bodies in monocotyledons , 2003, The Botanical Review.

[26]  D. Graetz,et al.  13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths , 2003 .

[27]  M. Sussman,et al.  Got silicon? The non-essential beneficial plant nutrient. , 2003, Current opinion in plant biology.

[28]  K. V. Flannery,et al.  The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Dixon Koeleria macrantha (Ledeb.) Schultes (K. alpigena Domin, K. cristata (L.) Pers. pro parte, K. gracilis Pers., K. albescens auct. non DC.) , 2000 .

[30]  O. Lichtenberger,et al.  Analytical electron microscopy as a powerful tool in plant cell biology: examples using electron energy loss spectroscopy and X-ray microanalysis. , 1997, European journal of cell biology.

[31]  P. Kaufman,et al.  Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. , 1996, Journal of experimental botany.

[32]  J. Theunissen A method for isolating and preparing silica bodies in grasses for scanning electron microscopy. , 1994, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[33]  E. Epstein The anomaly of silicon in plant biology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Bazely,et al.  Do grasses fight back? The case for antiherbivore defences. , 1993, Trends in ecology & evolution.

[35]  D. Batten Phytolith analysis. An archaeological and geological perspective , 1991 .

[36]  D. Piperno,et al.  Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. E. Nelson,et al.  A Fossil Grass (Gramineae: Chloridoideae) from the Miocene with Kranz Anatomy , 1986, Science.

[38]  Peter B. Kaufman,et al.  Studies on Silicification of Epidermal Tissues of Grasses as Investigated by Soft X-ray Image Analysis : II. Differences in frequency of silica bodies in bulliform cells at different positions in the leaves of rice plants , 1984 .

[39]  P. Kaufman,et al.  Studies on Silicification of Epidermal Tissues of Grasses as Investigated by Soft X-ray Image Analysis : I. On the method to detect and calculate frequency of silica bodies in bulliform cells , 1983 .

[40]  C. R. Peters,et al.  Electron-optical microscopic study of incipient dental microdamage from experimental seed and bone crushing. , 1982, American journal of physical anthropology.

[41]  K. Hamamura Varietal Differences in Ethylene Production and Etiolated Seedling Characters in Rice with Special Reference to Floation Habit , 1979 .

[42]  P. Kaufman,et al.  94 SCANNING ELECTRON MICROSCOPY AND X-RAY MICRO-ANALYSIS OF SILICA IN THE LEAF SHEATH PULVINUS AND INTERNODAL INTERCALARY MERISTEM OF RICE , 1979 .

[43]  D. Pearsall Phytolith Analysis of Archeological Soils: Evidence for Maize Cultivation in Formative Ecuador , 1978, Science.

[44]  W. Bigelow,et al.  Silica in Developing Epidermal Cells of Avena Internodes: Electron Microprobe Analysis , 1969, Science.

[45]  A. G. Sangster Studies of Opaline Silica Deposits in the Leaf of Sieglingia decumbens L. ‘Bernh.’, using the Scanning Electron Microscope , 1968 .

[46]  L. Wilding Radiocarbon Dating of Biogenetic Opal , 1967, Science.

[47]  B. Heezen,et al.  Opal Phytoliths in a North Atlantic Dust Fall , 1967, Science.

[48]  Robert L. Jones,et al.  Aspects of Catenary and Depth Distribution of Opal Phytoliths in Illinois Soils1 , 1964 .

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  C. Brackhage,et al.  Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. , 2013, The Science of the total environment.

[51]  M. Dotaniya,et al.  Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems , 2012 .

[52]  J. Ma Silicon transporters in higher plants. , 2010, Advances in experimental medicine and biology.

[53]  S. Hartley,et al.  Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. , 2009, The Journal of animal ecology.

[54]  F. Braet,et al.  Correlative Fluorescence- and Scanning, Transmission Electron Microscopy for Biomolecular Investigation , 2007 .

[55]  D. Piperno,et al.  Paleontology. Dinosaurs dined on grass. , 2005, Science.

[56]  Chen Chang ON MORPHOLOGY AND MORPHOGENESIS OF SILICA BODIES IN BAMBUSA MULTIPLEX VAR.NANA , 2003 .

[57]  K. Tamai,et al.  A Rice Mutant Defective in Si Uptake , 2002 .

[58]  D. Piperno,et al.  The silica bodies of tropical American grasses : morphology, taxonomy, and implications for grass systematics and fossil phytolith identification , 1998 .

[59]  L. Datnoff,et al.  Silicon Management and Sustainable Rice Production , 1996 .

[60]  D. Pearsall,et al.  Archaological age determinations derived from opal phytoliths by thermoluminescence , 1993 .

[61]  D. Piperno,et al.  Current research in phytolith analysis : applications in archaeology and paleoecology , 1993 .

[62]  S. Mulholland,et al.  Phytolith systematics : emerging issues , 1992 .

[63]  S. Mulholland,et al.  Phytolith Systematics: An Introduction , 1992 .

[64]  B. Volcani,et al.  Silicon and Siliceous Structures in Biological Systems , 1981, Springer New York.

[65]  P. Kaufman,et al.  Silica in Shoots of Higher Plants , 1981 .