A class of numerical algorithms for computing outer inverses

The aim of this study is to present a class of numerical algorithms for finding outer inverses with prescribed range and null space. General convergence theorems are proven. Some particular cases of the general algorithm are introduced and demonstrated. Theoretical convergence speed and computational efficiency will further be supported by employing some numerical tests.

[1]  M. Drazin A class of outer generalized inverses , 2012 .

[2]  On g-inverses and the nonsingularity of a bordered matrixABC0 , 1990 .

[3]  Hebing Wu,et al.  On the perturbation and subproper splittings for the generalized inverse AT,S(2) of rectangular matrix A , 2001 .

[4]  Predrag S. Stanimirovic,et al.  An accelerated iterative method for computing weighted Moore-Penrose inverse , 2013, Appl. Math. Comput..

[5]  Joan-Josep Climent,et al.  A geometrical approach on generalized inverses by Neumann-type series , 2001 .

[6]  Bing Zheng,et al.  Generalized inverse A(2)T, S and a rank equation , 2004, Appl. Math. Comput..

[7]  Chen Yonglin,et al.  The generalized Bott-Duffin inverse and its applications , 1990 .

[8]  Yimin Wei,et al.  A note on computing the generalized inverse A T,S (2) of a matrix A , 2002 .

[9]  Fazlollah Soleymani,et al.  An efficient matrix iteration for computing weighted Moore-Penrose inverse , 2014, Appl. Math. Comput..

[10]  Fazlollah Soleymani,et al.  An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix , 2013, Appl. Math. Comput..

[11]  Hebing Wu,et al.  (T,S) splitting methods for computing the generalized inverse and rectangular systems , 2001, Int. J. Comput. Math..

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Hebing Wu,et al.  The representation and approximation for the generalized inverse AT, S(2) , 2003, Appl. Math. Comput..

[14]  Yimin Wei,et al.  Integral and limit representations of the outer inverse in Banach space , 2012 .

[15]  Xiaoji Liu,et al.  Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices , 2013 .

[16]  Francis Hsuan,et al.  2 - Inverses and Their Statistical Application , 1988 .

[17]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[18]  Guoliang Chen,et al.  Full-rank representation of generalized inverse AT, S(2) and its application , 2007, Comput. Math. Appl..

[19]  Yimin Wei,et al.  A characterization and representation of the generalized inverse A(2)T,S and its applications , 1998 .

[20]  Predrag S. Stanimirović,et al.  A Higher Order Iterative Method for Computing the Drazin Inverse , 2013, TheScientificWorldJournal.

[21]  Xiaoji Liu,et al.  Successive Matrix Squaring Algorithm for Computing the Generalized Inverse AT,S(2) , 2012, J. Appl. Math..

[22]  Predrag S. Stanimirovic,et al.  Full-rank representations of {2, 4}, {2, 3}-inverses and successive matrix squaring algorithm , 2011, Appl. Math. Comput..

[23]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[24]  Michael Trott The Mathematica GuideBook for Numerics , 2005 .

[25]  Yimin Wei,et al.  Condition numbers for the outer inverse and constrained singular linear system , 2006, Appl. Math. Comput..

[26]  Yong-Lin Chen,et al.  Representation and approximation of the outer inverse AT,S(2) of a matrix A , 2000 .