Statistical characterization of temporal structure of storms

The authors present a statistical procedure to estimate the probability distributions of storm characteristics. The approach uses recent advances in stochastic hydrological modeling. The temporal dynamics of rainfall are modeled via a reward alternating renewal process that describes wet and dry phases of storms. In particular, the wet phase is modeled as a rectangular pulse process with dependent random duration and intensity; the global dependence structure is described using multidimensional copulas. The marginal distributions are described by Generalized Pareto laws. The authors derive both the storm volume statistics and the rainfall volume distribution within a fixed temporal window preceding a storm. Based on these results, they calculate the antecedent moisture conditions. The paper includes a thorough discussion of the validity of the assumptions and approximations introduced, and an application to actual rainfall data. The models presented here have important implications for improved design procedures of water resources and hydrologic systems.

[1]  C. De Michele,et al.  Analytical calculation of storm volume statistics involving Pareto‐like intensity‐duration marginals , 2004 .

[2]  Demetris Koutsoyiannis,et al.  A scaling model of a storm hyetograph , 1993 .

[3]  Ataur Rahman,et al.  Monte Carlo Simulation of Flood Frequency Curves from Rainfall , 2002 .

[4]  Eric F. Wood,et al.  On Hydrologic Similarity: 1. Derivation of the Dimensionless Flood Frequency Curve , 1986 .

[5]  Peter S. Eagleson,et al.  Ecological optimality in water‐limited natural soil‐vegetation systems: 1. Theory and hypothesis , 1982 .

[6]  Gianfranco Becciu,et al.  Bivariate exponential model applied to intensities and durations of extreme rainfall , 1994 .

[7]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[8]  Donald D. Gray,et al.  Antecedent Moisture Condition Probabilities , 1982 .

[9]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[10]  V. T. Chow,et al.  Advances in hydroscience , 1964 .

[11]  P. S. Eagleson Dynamics of flood frequency , 1972 .

[12]  M. Small,et al.  The Relationship Between a Continuous‐Time Renewal Model and a Discrete Markov Chain Model of Precipitation Occurrence , 1986 .

[13]  Eric F. Wood,et al.  A derived flood frequency distribution using Horton Order Ratios , 1982 .

[14]  F. Charbonnier,et al.  The antecedent soil moisture condition of the curve number procedure , 2000 .

[15]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[16]  V. Singh,et al.  Catchment area‐based evaluation of the AMC‐dependent SCS‐CN‐based rainfall–runoff models , 2005 .

[17]  R. Bras,et al.  Physically based probabilistic models of infiltration, soil moisture, and actual evapotranspiration , 1981 .

[18]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[19]  H. Madsen,et al.  Regional estimation of rainfall intensity‐duration‐frequency curves using generalized least squares regression of partial duration series statistics , 2002 .

[20]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[21]  G. Grimmett,et al.  Probability and random processes , 2002 .

[22]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  William H. Press,et al.  Numerical recipes in C , 2002 .

[24]  Ignacio Rodriguez-Iturbe,et al.  On the probabilistic structure of storm surface runoff , 1985 .

[25]  Teich,et al.  Fractal renewal processes generate 1/f noise. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[27]  Peter S. Eagleson,et al.  Climatology of Station Storm Rainfall in the Continental United States: Parameters of the Bartlett-Lewis and Poisson Rectangular Pulses Models , 1992 .

[28]  C. Michele,et al.  From generalized Pareto to extreme values law: Scaling properties and derived features , 2001 .

[29]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences , 1978 .

[30]  Juan B. Valdés,et al.  A Physically Based Flood Frequency Distribution , 1984 .

[31]  Juan B. Valdés,et al.  Estimation of flood frequencies for ungaged catchments , 1993 .

[32]  Murugesu Sivapalan,et al.  Modeling of rainfall time series and extremes using bounded random cascades and levy‐stable distributions , 2000 .

[33]  Demetris Koutsoyiannis,et al.  Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences , 2000 .

[34]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[35]  P. S. Eagleson Ecohydrology: Darwinian Expression of Vegetation Form and Function , 2002 .

[36]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[37]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[38]  Rafael L. Bras,et al.  Urban Storm Water Management: Distribution of Flood Volumes , 1979 .

[39]  Murugesu Sivapalan,et al.  Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves , 1998 .

[40]  G. Kuczera,et al.  Seasonal generalized exponential probability models with application to interstorm and storm durations , 1998 .

[41]  G. V. Loganathan,et al.  Effects of Urbanization on Frequencies of Overflows and Pollutant Loadings From Storm Sewer Overflows: A Derived Distribution Approach , 1984 .

[42]  R. Carlson,et al.  A northern snowmelt‐flood frequency model , 1976 .

[43]  R. Nelsen An Introduction to Copulas , 1998 .

[44]  R. S. Kurothe,et al.  Derived flood frequency distribution for negatively correlated rainfall intensity and duration , 1997 .

[45]  Paul S. P. Cowpertwait A renewal cluster model for the inter-arrival times of rainfall events , 2001 .

[46]  R. Bras Hydrology : an introduction to hydrologic science , 1990 .

[47]  V. Klemeš,et al.  Physically Based Stochastic Hydrologic Analysis , 1978 .

[48]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[49]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[50]  Walter T. Sittner,et al.  Continuous hydrograph synthesis with an API‐type hydrologic model , 1969 .

[51]  C. De Michele,et al.  On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition , 2002 .

[52]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[53]  V. Iacobellis,et al.  Multiscaling pulse representation of temporal rainfall , 2002 .

[54]  Dennis McLaughlin,et al.  Estimation of flood frequency: An evaluation of two derived distribution procedures , 1987 .

[55]  Eric F. Wood,et al.  An analysis of the effects of parameter uncertainty in deterministic hydrologic models , 1976 .

[56]  Kenneth J. Koehler,et al.  A strategy for constructing multivariate distributions , 1995 .

[57]  Murugesu Sivapalan,et al.  Temporal scales and hydrological regimes: Implications for flood frequency scaling , 1997 .

[58]  Gianfausto Salvadori,et al.  Bivariate return periods via 2-Copulas , 2004 .

[59]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[60]  H. Joe Multivariate models and dependence concepts , 1998 .

[61]  Richard M. Vogel,et al.  A derived flood frequency distribution for correlated rainfall intensity and duration. , 2000 .