Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing.

[1]  Duane E. Prasuhn,et al.  Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results. , 2010, Small.

[2]  Martin Oheim,et al.  Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  S. Kuwabata,et al.  Systematic Studies on Emission Quenching of Cadmium Telluride Nanoparticles , 2009 .

[4]  T. J. Mountziaris,et al.  Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  K. Lee,et al.  Effects of dopamine concentration on energy transfer between dendrimer-QD and dye-labeled antibody. , 2009, Ultramicroscopy.

[6]  Igor L. Medintz,et al.  Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates , 2009 .

[7]  Lina Carlini,et al.  Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates. , 2009, Physical chemistry chemical physics : PCCP.

[8]  J. Perez,et al.  Quantum Dot-Based OFF/ON Probe for Detection of Glutathione , 2009 .

[9]  Igor L. Medintz,et al.  Quantum dot-based resonance energy transfer and its growing application in biology. , 2009, Physical chemistry chemical physics : PCCP.

[10]  I. Willner,et al.  Biosensing and probing of intracellular metabolic pathways by NADH-sensitive quantum dots. , 2009, Angewandte Chemie.

[11]  S. Clarke Synthesis, biological targeting and photophysics of quantum dots , 2009 .

[12]  Weiwei Guo,et al.  Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. , 2009, Analytical chemistry.

[13]  I. Willner,et al.  NAD(+)/NADH-sensitive quantum dots: applications to probe NAD(+)-dependent enzymes and to sense the RDX explosive. , 2009, Nano letters.

[14]  Igor L. Medintz,et al.  Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. , 2008, Journal of the American Chemical Society.

[15]  Igor L. Medintz,et al.  Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability , 2008, Journal of Materials Chemistry.

[16]  Maria Jose Ruedas-Rama,et al.  Azamacrocycle activated quantum dot for zinc ion detection. , 2008, Analytical chemistry.

[17]  I. Willner,et al.  Semiconductor quantum dots for bioanalysis. , 2008, Angewandte Chemie.

[18]  Shuming Nie,et al.  Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. , 2008, Journal of the American Chemical Society.

[19]  H. Ju,et al.  Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. , 2008, The Analyst.

[20]  C. Costentin Electrochemical approach to the mechanistic study of proton-coupled electron transfer. , 2008, Chemical reviews.

[21]  H. Ju,et al.  Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. , 2008, Analytical chemistry.

[22]  R. Thakar,et al.  Imparting nanoparticle function with size-controlled amphiphilic polymers. , 2008, Journal of the American Chemical Society.

[23]  Faisal A. Aldaye,et al.  Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots. , 2008, Bioconjugate chemistry.

[24]  Weiwei Guo,et al.  Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. , 2008, Analytical chemistry.

[25]  A. Mikhailovsky,et al.  Quantum dot fluorescence quenching pathways with Cr(III) complexes. photosensitized NO production from trans-Cr(cyclam)(ONO)2+. , 2008, Journal of the American Chemical Society.

[26]  John F. Callan,et al.  Anion Sensing with Luminescent Quantum Dots – A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism , 2008, Journal of Fluorescence.

[27]  M. Shamsipur,et al.  Self-assembled monolayers of a hydroquinone-terminated alkanethiol onto gold surface. Interfacial electrochemistry and Michael-addition reaction with glutathione , 2007 .

[28]  Igor L. Medintz,et al.  Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots , 2007 .

[29]  Haesik Yang,et al.  Selective Determination of Catechol in the Presence of Hydroquinone at Bare Indium Tin Oxide Electrodes via Peak‐Potential Separation and Redox Cycling by Hydrazine , 2007 .

[30]  S. Yao,et al.  Photo-induced interfacial electron transfer from CdSe quantum dots to surface-bound p-benzoquinone and anthraquinone , 2007 .

[31]  Eduard I. Zenkevich,et al.  Photo-induced electron transfer in CdSe nanocrystals passivated by quinone derivatives , 2007, International Conference on Coherent and Nonlinear Optics.

[32]  F. Raymo,et al.  Luminescent chemosensors based on semiconductor quantum dots. , 2007, Physical chemistry chemical physics : PCCP.

[33]  C. Tommos,et al.  Redox characteristics of a de novo quinone protein. , 2007, The journal of physical chemistry. B.

[34]  Itamar Willner,et al.  Probing biocatalytic transformations with CdSe-ZnS QDs. , 2006, Journal of the American Chemical Society.

[35]  M. E. Kenney,et al.  Observation of non-Förster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. , 2006, Journal of the American Chemical Society.

[36]  Moungi G Bawendi,et al.  A ratiometric CdSe/ZnS nanocrystal pH sensor. , 2006, Journal of the American Chemical Society.

[37]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[38]  Igor L. Medintz,et al.  Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates , 2006, Nature materials.

[39]  Diana Suffern,et al.  Photophysics of dopamine-modified quantum dots and effects on biological systems , 2006, Nature materials.

[40]  Françisco M Raymo,et al.  pH-sensitive quantum dots. , 2006, The journal of physical chemistry. B.

[41]  S. Hackney,et al.  Water-Soluble, Cyclodextrin-Modified CdSe−CdS Core−Shell Structured Quantum Dots , 2006 .

[42]  Jagjit Nanda,et al.  Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. , 2005, Journal of the American Chemical Society.

[43]  Xiaogang Peng,et al.  Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. , 2005, Journal of the American Chemical Society.

[44]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[45]  T. Lian,et al.  Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. , 2005, Annual review of physical chemistry.

[46]  Supramolecular control of complexation-induced fluorescence change of water-soluble, beta-cyclodextrin-modified CdS quantum dots. , 2004, Chemical communications.

[47]  C. Wraight Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. , 2004, Frontiers in bioscience : a journal and virtual library.

[48]  Clemens Burda,et al.  Femtosecond Spectroscopic Investigation of the Carrier Lifetimes in Digenite Quantum Dots and Discrimination of the Electron and Hole Dynamics via Ultrafast Interfacial Electron Transfer , 2003 .

[49]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[50]  A. J. Miranda-Ordieres,et al.  Electrocatalytic Oxidation of NADH at Polyadenylic Acid Modified Graphite Electrodes , 2002 .

[51]  Bo Tang,et al.  Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. , 2002, Talanta.

[52]  H. Finklea Theory of Coupled Electron−Proton Transfer with Potential-Dependent Transfer Coefficients for Redox Couples Attached to Electrodes† , 2001 .

[53]  M. Shim,et al.  Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals , 2001 .

[54]  M. El-Sayed,et al.  Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy , 1999 .

[55]  K. Kramer,et al.  Electrochemical oxidation of N-acyldopamines and regioselective reactions of their quinones with N-acetylcysteine and thiourea. , 1998, Archives of biochemistry and biophysics.

[56]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[57]  S. Greenfield,et al.  Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions. , 1995, Free radical biology & medicine.

[58]  P. Cai,et al.  Preparation, reactivity, and neurotoxicity of tryptamine-4,5-dione , 1990 .

[59]  R Horn,et al.  Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording , 1989, The Journal of general physiology.

[60]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[61]  S. I. Bailey,et al.  A cyclic voltammetric study of the aqueous electrochemistry of some quinones , 1985 .

[62]  E. Laviron Electrochemical reactions with protonations at equilibrium: Part X. The kinetics of the p-benzoquinone/hydroquinone couple on a platinum electrode , 1984 .

[63]  E. Laviron Electrochemical reactions with protonations at equilibrium , 1981 .

[64]  S. Patai,et al.  The Chemistry of the quinonoid compounds , 1974 .

[65]  H. Laitinen Chemical Analysis; an Advanced Text and Reference , 1960 .

[66]  W. Schumb Stability of Concentrated Hydrogen Peroxide Solutions , 1949 .