Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model

Four methods based on the ensemble Kalman filter (EnKF) are tested to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) into finescale (1 km) land model simulations. Synthetic coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (regridding) to the finescale model resolution prior to data assimilation. In either case, observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated finescale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the finescale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.

[1]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[2]  Martti Hallikainen,et al.  HUT snow emission model and its applicability to snow water equivalent retrieval , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  M. Durand,et al.  Effects of uncertainty magnitude and accuracy on assimilation of multiscale measurements for snowpack characterization , 2008 .

[4]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[5]  Wade T. Crow,et al.  The Value of Coarse-Scale Soil Moisture Observations for Regional Surface Energy Balance Modeling , 2002 .

[6]  R. Dickinson,et al.  The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d) , 2001 .

[7]  Dorothy K. Hall,et al.  Utilizing multiple datasets for snow-cover mapping. , 2000 .

[8]  Benjamin F. Zaitchik,et al.  Forward-Looking Assimilation of MODIS-Derived Snow-Covered Area into a Land Surface Model , 2009 .

[9]  Fabio Castelli,et al.  Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery , 2004 .

[10]  R. Pielke,et al.  Improving first‐order snow‐related deficiencies in a regional climate model , 1999 .

[11]  Hongjie Xie,et al.  Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements , 2008 .

[12]  Matthew Rodell,et al.  Updating a Land Surface Model with MODIS-Derived Snow Cover , 2004 .

[13]  Steven A. Margulis,et al.  Feasibility Test of Multifrequency Radiometric Data Assimilation to Estimate Snow Water Equivalent , 2006 .

[14]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[15]  Wade T. Crow,et al.  Recent Advances in Land Data Assimilation at the NASA Global Modeling and Assimilation Office , 2009 .

[16]  Aaron A. Berg,et al.  Realistic Initialization of Land Surface States: Impacts on Subseasonal Forecast Skill , 2004 .

[17]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[18]  Gabrielle De Lannoy,et al.  Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge , 2006 .

[19]  R. Koster,et al.  Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation , 2003 .

[20]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[21]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[22]  Dara Entekhabi,et al.  An Ensemble Multiscale Filter for Large Nonlinear Data Assimilation Problems , 2008 .

[23]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[24]  Xu Liang,et al.  A downscaling framework for L band radiobrightness temperature imagery , 2003 .

[25]  Paul R. Houser,et al.  A methodology for snow data assimilation in a land surface model , 2004 .

[26]  Lifeng Luo,et al.  A Multiscale Ensemble Filtering System for Hydrologic Data Assimilation. Part I: Implementation and Synthetic Experiment , 2009 .

[27]  M. Rienecker,et al.  Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model , 2002 .

[28]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[29]  Steven A. Margulis,et al.  Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction , 2008 .

[30]  M. Clark,et al.  Snow Data Assimilation via an Ensemble Kalman Filter , 2006 .

[31]  E. Wood,et al.  Data Assimilation for Estimating the Terrestrial Water Budget Using a Constrained Ensemble Kalman Filter , 2006 .

[32]  Christopher A. Hiemstra,et al.  A Simple Data Assimilation System for Complex Snow Distributions (SnowAssim) , 2008 .

[33]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[34]  D. McLaughlin,et al.  Downscaling of radio brightness measurements for soil moisture estimation: A four‐dimensional variational data assimilation approach , 2001 .

[35]  Xu Liang,et al.  Impacts of spatial resolutions and data quality on soil moisture data assimilation , 2008 .

[36]  Niko E. C. Verhoest,et al.  Adaptive Soil Moisture Profile Filtering for Horizontal Information Propagation in the Independent Column-Based CLM2.0 , 2009 .

[37]  Alfred T. C. Chang,et al.  Quantifying the uncertainty in passive microwave snow water equivalent observations , 2005 .

[38]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[39]  Jouni Pulliainen,et al.  Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations , 2006 .

[40]  W. J. Shuttleworth,et al.  Integration of soil moisture remote sensing and hydrologic modeling using data assimilation , 1998 .

[41]  P. Dirmeyer Using a global soil wetness dataset to improve seasonal climate simulation , 2000 .

[42]  Sujay V. Kumar,et al.  High-performance Earth system modeling with NASA/GSFC’s Land Information System , 2007, Innovations in Systems and Software Engineering.

[43]  Sujay V. Kumar,et al.  An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF , 2008, Environ. Model. Softw..

[44]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .

[45]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[46]  Randal D. Koster,et al.  Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model , 2005 .

[47]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[48]  Jeffrey P. Walker,et al.  Hydrologic Data Assimilation , 2012 .

[49]  Paul R. Houser,et al.  Scanning multichannel microwave radiometer snow water equivalent assimilation , 2007 .

[50]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[51]  Paul R. Houser,et al.  Factors affecting remotely sensed snow water equivalent uncertainty , 2005 .

[52]  Xu Liang,et al.  Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models , 2004 .

[53]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[54]  Barry E. Goodison,et al.  Accuracy of Canadian Snow Gage Measurements , 1978 .

[55]  N. Verhoest,et al.  Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter , 2007 .

[56]  Steven A. Margulis,et al.  Correcting first‐order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme , 2007 .

[57]  N. Cressie,et al.  Spatio-temporal prediction of snow water equivalent using the Kalman filter , 1996 .

[58]  Wade T. Crow,et al.  A land surface data assimilation framework using the land information system : Description and applications , 2008 .

[59]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[60]  Chris Derksen,et al.  Combining SMMR and SSM/I Data for Time Series Analysis of Central North American Snow Water Equivalent , 2003 .

[61]  Randal D. Koster,et al.  Bias reduction in short records of satellite soil moisture , 2004 .

[62]  David A. Robinson,et al.  A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains , 2000 .

[63]  Yann Kerr,et al.  Assimilation of Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data , 2006 .

[64]  Praveen Kumar,et al.  A multiple scale state-space model for characterizing subgrid scale variability of near-surface soil moisture , 1999, IEEE Trans. Geosci. Remote. Sens..