A new investigation of the extended Krylov subspace method for matrix function evaluations
暂无分享,去创建一个
[1] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[2] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[3] Anne Greenbaum,et al. The polynomial numerical hulls of Jordan blocks and related matrices , 2003 .
[4] J. Boyle,et al. HSL MI 20 : an efficient AMG preconditioner , 2007 .
[5] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[6] P. Petrushev,et al. Rational Approximation of Real Functions , 1988 .
[7] Kamy Sepehrnoori,et al. An extended Krylov subspace method to simulate single-phase fluid flow phenomena in axisymmetric and anisotropic porous media , 2003 .
[8] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[9] Tobin A. Driscoll,et al. Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.
[10] Anthony W. Thomas,et al. Nucleon Mass In Chiral Effective Field Theory , 2005 .
[11] Marlis Hochbruck,et al. Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .
[12] P. Sonneveld,et al. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .
[13] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[14] Igor Moret. Rational Lanczos approximations to the matrix square root and related functions , 2009, Numer. Linear Algebra Appl..
[15] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[16] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[17] M. Hochbruck,et al. Exponential Runge--Kutta methods for parabolic problems , 2005 .
[18] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[19] H. Tal-Ezer. Spectral methods in time for parabolic problems , 1989 .
[20] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[21] Andreas Frommer,et al. QCD and numerical analysis III : proceedings of the Third International Workshop on Numerical Analysis and Lattice QCD, Edinburgh, June-July 2003 , 2005 .
[22] Andreas Frommer,et al. MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO MATRIX FUNCTIONS OF HERMITIAN MATRICES , 2009 .
[23] Christof Schütte,et al. Numerical Integrators for Quantum-Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.
[24] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[25] P. K. Suetin. Series of Faber polynomials , 1998 .
[26] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[27] A. Boriçi,et al. Computational methods for UV-suppressed fermions , 2003 .
[28] I. Moret,et al. An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .
[29] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[30] ANDREAS FROMMER,et al. Stopping Criteria for Rational Matrix Functions of Hermitian and Symmetric Matrices , 2008, SIAM J. Sci. Comput..
[31] L. Tuckerman,et al. A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .
[32] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[33] Vladimir Druskin,et al. On monotonicity of the Lanczos approximation to the matrix exponential , 2008 .
[34] Valeria Simoncini,et al. Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..
[35] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[36] Vladimir Druskin,et al. New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .
[37] K. Gustafson,et al. Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .
[38] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[39] L. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .
[40] Luciano Lopez,et al. Acceleration techniques for approximating the matrix exponential , 2008 .
[41] Sergey I. Vinitsky,et al. Magnus-factorized method for numerical solving the time-dependent Schrödinger equation , 2000 .
[42] Yousef Saad,et al. A Parallel Block Cyclic Reduction Algorithm for the Fast Solution of Elliptic Equations , 1987, ICS.
[43] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[44] Valeria Simoncini,et al. Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..
[45] Bernhard Beckermann,et al. Image numérique, GMRES et polynômes de Faber , 2005 .
[46] Andr'e Nauts,et al. New Approach to Many-State Quantum Dynamics: The Recursive-Residue-Generation Method , 1983 .
[47] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..
[48] Igor Moret,et al. Error Estimates for Polynomial Krylov Approximations to Matrix Functions , 2008, SIAM J. Matrix Anal. Appl..
[49] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[50] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[51] L. Knizhnerman,et al. Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .
[52] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .