Dynamics of a Mathematical Hematopoietic Stem-Cell Population Model

We explore the bifurcations and dynamics of a scalar differential equation with a single constant delay which models the population of human hematopoietic stem cells in the bone marrow. One parameter continuation reveals that with a delay of just a few days, stable periodic dynamics can be generated of all periods from about one week up to one decade! The long period orbits seem to be generated by several mechanisms, one of which is a canard explosion, for which we approximate the dynamics near the slow manifold. Two-parameter continuation reveals parameter regions with even more exotic dynamics including quasi-periodic and phase-locked tori, and chaotic solutions. The panoply of dynamics that we find in the model demonstrates that instability in the stem cell dynamics could be sufficient to generate the rich behaviour seen in dynamic hematological diseases.

[1]  Jacques Bélair,et al.  Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. , 2003, Journal of theoretical biology.

[2]  M. Mackey,et al.  Cyclic thrombocytopenia with statistically significant neutrophil oscillations , 2018, Clinical case reports.

[3]  Dimitri Breda,et al.  Stability of Linear Delay Differential Equations: A Numerical Approach with MATLAB , 2014 .

[4]  Laurent Pujo-Menjouet,et al.  Contribution to the study of periodic chronic myelogenous leukemia. , 2004, Comptes rendus biologies.

[5]  Michael C. Mackey,et al.  Long Period Oscillations in a G0 Model of Hematopoietic Stem Cells , 2005, SIAM J. Appl. Dyn. Syst..

[6]  Junjie Wei,et al.  Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays , 2010 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Fabien Crauste,et al.  Periodic oscillations in leukopoiesis models with two delays. , 2006, Journal of theoretical biology.

[9]  A. R. Humphries,et al.  A Mathematical Model of Granulopoiesis Incorporating the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization , 2015, Bulletin of mathematical biology.

[10]  I. Tannock,et al.  ON THE EXISTENCE OF A Go‐PHASE IN THE CELL CYCLE , 1970 .

[11]  M. Mackey,et al.  Bifurcations in a white-blood-cell production model. , 2004, Comptes rendus biologies.

[12]  John Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state-dependent time lags: III , 2003 .

[13]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[14]  John Mallet-Paret,et al.  Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations , 2011 .

[15]  M C Mackey,et al.  Global stability in a delayed partial differential equation describing cellular replication , 1994, Journal of mathematical biology.

[16]  A. Wolanskyj,et al.  Cyclic Bicytopenia in a Patient with Shapiro Syndrome , 2013, Case reports in hematology.

[17]  É. Benoît Chasse au canard , 1980 .

[18]  H. Birgens,et al.  Reversible adult‐onset cyclic haematopoiesis with a cycle length of 100 days , 1993, British journal of haematology.

[19]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[20]  Michael C Mackey,et al.  A mathematical model of hematopoiesis: II. Cyclical neutropenia. , 2005, Journal of theoretical biology.

[21]  Thomas Erneux,et al.  Delay induced canards in a model of high speed machining , 2009 .

[22]  Michael C. Mackey,et al.  Relaxation Oscillations in a Class of Delay Differential Equations , 2002, SIAM J. Appl. Math..

[23]  Michael C Mackey,et al.  Dynamic hematological disease: a review , 2009, Journal of mathematical biology.

[24]  Giovanni Samaey,et al.  DDE-BIFTOOL Manual - Bifurcation analysis of delay differential equations , 2014, 1406.7144.

[25]  John Mallet-Paret,et al.  Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation , 1986 .

[26]  Dimitri Breda,et al.  Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations , 2014, Numerische Mathematik.

[27]  Michael C Mackey,et al.  A mathematical model of hematopoiesis--I. Periodic chronic myelogenous leukemia. , 2005, Journal of theoretical biology.

[28]  Michael C. Mackey,et al.  Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis , 1978 .

[29]  M. Mackey,et al.  Origins of oscillation patterns in cyclical thrombocytopenia. , 2019, Journal of theoretical biology.

[30]  A. R. Humphries,et al.  Normal and pathological dynamics of platelets in humans , 2016, Journal of mathematical biology.

[31]  A. Morley Blood-cell cycles in polycythaemia vera. , 1969, Australasian annals of medicine.

[32]  L. Glass,et al.  PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS * , 1979, Annals of the New York Academy of Sciences.

[33]  M. Mackey,et al.  Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia , 2004, SIAM J. Math. Anal..

[34]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[35]  André Longtin,et al.  Power spectra and dynamical invariants for delay-differential and difference equations , 1998 .

[36]  Jianhong Wu,et al.  Introduction to Functional Differential Equations , 2013 .

[37]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[38]  S. Disney,et al.  On the Lambert W function: EOQ applications and pedagogical considerations , 2010 .

[39]  F. Crauste,et al.  Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cell Dynamics with Several Delays , 2006 .

[40]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[41]  N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference‐Differential Equation , 1950 .

[42]  A Ohara,et al.  [Cyclic neutropenia]. , 2000, Ryoikibetsu shokogun shirizu.

[43]  Michael C Mackey,et al.  High frequency spikes in long period blood cell oscillations , 2006, Journal of mathematical biology.

[44]  M C Mackey,et al.  Periodic Haematological Diseases: Mystical Entities or Dynamical Disorders? , 1989, Journal of the Royal College of Physicians of London.

[45]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[46]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[47]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[48]  John Rinzel,et al.  Canard theory and excitability , 2013 .

[49]  M C Mackey,et al.  Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia. , 2001, Journal of theoretical biology.

[50]  M. Trigg Hematopoietic stem cells. , 2004, Pediatrics.

[51]  Bernd Krauskopf,et al.  Resonance Phenomena in a Scalar Delay Differential Equation with Two State-Dependent Delays , 2016, SIAM J. Appl. Dyn. Syst..

[52]  M C Mackey,et al.  Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. , 1998, Blood.

[53]  Hal L. Smith,et al.  An introduction to delay differential equations with applications to the life sciences / Hal Smith , 2010 .

[54]  J. Touboul,et al.  Canard Explosion in Delay Differential Equations , 2016 .