A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

[1]  S. Beale Biosynthesis of Hemes , 2007, EcoSal Plus.

[2]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[3]  Matthias Heinemann,et al.  Systematic assignment of thermodynamic constraints in metabolic network models , 2006, BMC Bioinformatics.

[4]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[5]  Anu Raghunathan,et al.  Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale , 2006, Nature Genetics.

[6]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[7]  S. Panke,et al.  Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data , 2006, Molecular systems biology.

[8]  S. Oliver,et al.  Chance and necessity in the evolution of minimal metabolic networks , 2006, Nature.

[9]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[10]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[11]  Matthew D. Jankowski,et al.  Genome-scale thermodynamic analysis of Escherichia coli metabolism. , 2006, Biophysical journal.

[12]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[13]  Martha B. Arnaud,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[14]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[15]  Bernhard O Palsson,et al.  The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[17]  Sang Yup Lee,et al.  Systems-level analysis of genome-scalein silico metabolic models using MetaFluxNet , 2005 .

[18]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[19]  B. Tse Sum Bui,et al.  Biotin synthase mechanism: an overview. , 2005, Biochemical Society transactions.

[20]  K. Bagramyan,et al.  Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. , 2005, Biophysical chemistry.

[21]  Ádám M. Halász,et al.  Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities , 2005, Bioinform..

[22]  Christos A. Ouzounis,et al.  Genome coverage, literally speaking , 2005 .

[23]  J. Cronan,et al.  A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. , 2005, Chemistry & biology.

[24]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[25]  R. Alberty Thermodynamics of Biochemical Reactions: Alberty/Thermodynamics , 2005 .

[26]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[27]  K. Goh,et al.  Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli. , 2004, Journal of theoretical biology.

[28]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[29]  Yasushi Noguchi,et al.  The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system. , 2004, Journal of biochemistry.

[30]  J. Stelling Mathematical models in microbial systems biology. , 2004, Current opinion in microbiology.

[31]  Bernhard Palsson,et al.  Two-dimensional annotation of genomes , 2004, Nature Biotechnology.

[32]  Peter D. Karp,et al.  A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases , 2004, BMC Bioinformatics.

[33]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[34]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[35]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[36]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[37]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[38]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[39]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[40]  H. Qian,et al.  Energy balance for analysis of complex metabolic networks. , 2002, Biophysical journal.

[41]  A. Danchin,et al.  The methionine salvage pathway in Bacillus subtilis , 2002, BMC Microbiology.

[42]  R. Helling,et al.  Speed versus Efficiency in Microbial Growth and the Role of Parallel Pathways , 2002, Journal of bacteriology.

[43]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[44]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Kouji Matsumoto,et al.  Viability of an Escherichia coli pgsANull Mutant Lacking Detectable Phosphatidylglycerol and Cardiolipin , 2000, Journal of bacteriology.

[46]  J. Keasling,et al.  Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. , 1998, Biotechnology and bioengineering.

[47]  J. Keasling,et al.  Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. , 1997, Biotechnology and bioengineering.

[48]  G. Unden,et al.  Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications. , 1997, European journal of biochemistry.

[49]  Amit Varma,et al.  Parametric sensitivity of stoichiometric flux balance models applied to wild‐type Escherichia coli metabolism , 1995, Biotechnology and bioengineering.

[50]  B. Palsson,et al.  Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. , 1993, Journal of theoretical biology.

[51]  T. Friedrich,et al.  The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. , 1993, Journal of molecular biology.

[52]  B. Palsson,et al.  Biochemical production capabilities of escherichia coli , 1993, Biotechnology and bioengineering.

[53]  R. Gennis,et al.  Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain , 1993, Journal of bacteriology.

[54]  V. Stewart,et al.  Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12 , 1993, Journal of Bacteriology.

[55]  R. Gennis,et al.  Properties of the two terminal oxidases of Escherichia coli. , 1991, Biochemistry.

[56]  M. Domach,et al.  Simple constrained‐optimization view of acetate overflow in E. coli , 1990, Biotechnology and bioengineering.

[57]  B. Wright,et al.  Cellular concentrations of enzymes and their substrates. , 1990, Journal of theoretical biology.

[58]  I. G. Young,et al.  Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli. , 1978, Biochemistry.

[59]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[60]  L. Frank,et al.  Improved chemical synthesis and enzymatic assay ofΔ1-pyrroline-5-car☐ylic acid , 1975 .

[61]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[62]  K. Donald Respiration , 1962 .

[63]  Adam M. Feist,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox , 2007, Nature Protocols.

[64]  K. Bagramyan,et al.  Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate , 2007, Cell Biochemistry and Biophysics.

[65]  Costas D Maranas,et al.  Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions. , 2005, Biophysical journal.

[66]  Leon Goldovsky,et al.  Genome coverage, literally speaking. The challenge of annotating 200 genomes with 4 million publications. , 2005, EMBO reports.

[67]  C. Mathews Thermodynamics of biochemical reactions , 2004 .

[68]  Christopher Rensing,et al.  FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress , 2004, Archives of Microbiology.

[69]  R. Lenski,et al.  Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation , 2003, Nature Reviews Genetics.

[70]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[71]  S. Silver Bacterial resistances to toxic metal ions--a review. , 1996, Gene.

[72]  F. Neidhardt,et al.  Physiology of the bacterial cell : a molecular approach , 1990 .

[73]  L. Frank,et al.  Improved chemical synthesis and enzymatic assay of delta-1-pyrroline-5-carboxylic acid. , 1975, Analytical biochemistry.