Linear growth of the entanglement entropy for quadratic Hamiltonians and arbitrary initial states

We prove that the entanglement entropy of any pure initial state of a bipartite bosonic quantum system grows linearly in time with respect to the dynamics induced by any unstable quadratic Hamiltonian. The growth rate does not depend on the initial state and is equal to the sum of certain Lyapunov exponents of the corresponding classical dynamics. This paper generalizes the findings of [Bianchi et al., JHEP 2018, 25 (2018)], which proves the same result in the special case of Gaussian initial states. Our proof is based on a recent generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum systems [De Palma et al., arXiv:2105.05627]. This technique allows us to extend our result to generic mixed initial states, with the squashed entanglement providing the right generalization of the entanglement entropy. We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems, including certain quantum field theory models.

[1]  S. Lloyd,et al.  Multimode quantum entropy power inequality , 2014, 1408.6410.

[2]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[3]  Curtis T. Asplund,et al.  Entanglement entropy converges to classical entropy around periodic orbits , 2015, 1503.04857.

[4]  David Avis,et al.  Distributed compression and multiparty squashed entanglement , 2007, ArXiv.

[5]  A. Holevo Quantum Systems, Channels, Information , 2019 .

[6]  Andreas Winter,et al.  Relative Entropy and Squashed Entanglement , 2012, 1210.3181.

[7]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[8]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[9]  L. Hackl,et al.  Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate , 2017, Journal of High Energy Physics.

[10]  D. Stanford,et al.  On entanglement spreading in chaotic systems , 2016, Journal of High Energy Physics.

[11]  V. Giovannetti,et al.  A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.

[12]  Robert R.Tucci Entanglement of Distillation and Conditional Mutual Information , 2002 .

[13]  G. Palma Gaussian optimizers and other topics in quantum information , 2017, 1710.09395.

[14]  G. Yocky,et al.  Decoherence , 2018, Principles of Quantum Computation and Information.

[15]  Entropy of gravitons produced in the early universe , 1999, gr-qc/9910065.

[16]  P. Ehrenfest Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik , 1927 .

[17]  David I. Kaiser,et al.  Nonperturbative Dynamics Of Reheating After Inflation: A Review , 2014, 1410.3808.

[18]  Andreas Winter,et al.  Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2018 .

[19]  Giacomo De Palma,et al.  The generalized strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems , 2021, 2105.05627.

[20]  Eugenio Bianchi,et al.  Entropy of a subalgebra of observables and the geometric entanglement entropy , 2019, Physical Review D.

[21]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[22]  A. Starobinsky,et al.  Semiclassicality and decoherence of cosmological perturbations , 1995, gr-qc/9504030.

[23]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[24]  Robert R. Tucci Relaxation Method For Calculating Quantum Entanglement , 2001, quant-ph/0101123.

[25]  Mark M. Wilde,et al.  Fidelity of recovery, geometric squashed entanglement, and measurement recoverability , 2014, 1410.1441.

[26]  Giacomo De Palma The Entropy Power Inequality with quantum conditioning , 2018, ArXiv.

[27]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[28]  G. De Palma,et al.  The Conditional Entropy Power Inequality for Bosonic Quantum Systems , 2017, Communications in Mathematical Physics.

[29]  S. Schlieder Some remarks about the localization of states in a quantum field theory , 1965 .

[30]  Mark M. Wilde,et al.  Squashed entanglement and approximate private states , 2016, Quantum Inf. Process..

[31]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[32]  F. Cyr-Racine,et al.  Reheating in Inflationary Cosmology: Theory and Applications , 2010, 1001.2600.

[33]  Giacomo De Palma,et al.  The conditional Entropy Power Inequality for quantum additive noise channels , 2018, Journal of Mathematical Physics.

[34]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[35]  Robert R. Tucci Separability of Density Matrices and Conditional Information Transmission , 2000 .

[36]  Entanglement of Bell Mixtures of Two Qubits , 2001, quant-ph/0103040.

[37]  M. Rigol,et al.  Entanglement production in bosonic systems: Linear and logarithmic growth , 2017, 1710.04279.

[38]  Robert Koenig,et al.  Geometric inequalities from phase space translations , 2016, 1606.08603.

[39]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[40]  Giacomo De Palma,et al.  The Entropy Power Inequality with quantum memory , 2017, ArXiv.

[41]  Dong Yang,et al.  Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof , 2007, IEEE Transactions on Information Theory.

[42]  Mario Berta,et al.  Rényi squashed entanglement, discord, and relative entropy differences , 2014, ArXiv.

[43]  M. Shirokov Squashed entanglement in infinite dimensions , 2015, 1507.08964.

[44]  Giacomo De Palma,et al.  New Lower Bounds to the Output Entropy of Multi-Mode Quantum Gaussian Channels , 2018, IEEE Transactions on Information Theory.

[45]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[46]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[47]  J. Haegeman,et al.  Geometry of variational methods: dynamics of closed quantum systems , 2020, 2004.01015.

[48]  S. Robertson,et al.  Quantum entanglement due to a modulated dynamical Casimir effect , 2014, 1404.5754.

[49]  Hu,et al.  Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. , 1988, Physical review. D, Particles and fields.

[50]  J. Berges,et al.  Parametric resonance in quantum field theory. , 2002, Physical review letters.

[51]  P. Calabrese,et al.  Entanglement and thermodynamics after a quantum quench in integrable systems , 2016, Proceedings of the National Academy of Sciences.

[52]  Graeme Smith,et al.  Corrections to “The Entropy Power Inequality for Quantum Systems” [Mar 14 1536-1548] , 2016, IEEE Transactions on Information Theory.

[53]  L. Hackl Aspects of Gaussian States Entanglement, Squeezing and Complexity , 2018 .

[54]  Zurek,et al.  Decoherence, chaos, and the second law. , 1994, Physical review letters.

[55]  Jordan S. Cotler,et al.  Entanglement growth after a global quench in free scalar field theory , 2016, 1609.00872.

[56]  M. Zilhão,et al.  Towards spacetime entanglement entropy for interacting theories , 2020, Journal of High Energy Physics.

[57]  Andrei Linde,et al.  Towards the theory of reheating after inflation , 1997 .

[58]  Hyungwon Kim,et al.  Ballistic spreading of entanglement in a diffusive nonintegrable system. , 2013, Physical review letters.

[59]  P. Calabrese,et al.  Entanglement dynamics after quantum quenches in generic integrable systems , 2017, 1712.07529.

[60]  Tadashi Takayanagi,et al.  Holographic entanglement entropy: an overview , 2009, 0905.0932.

[61]  V. Dodonov,et al.  Current status of the dynamical Casimir effect , 2010, 1004.3301.

[62]  Brandenberger,et al.  Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.

[63]  L. Hackl,et al.  Entanglement production in the dynamical Casimir effect at parametric resonance , 2019, Physical Review D.

[64]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[65]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[66]  Robert R. Tucci Quantum Entanglement and Conditional Information Transmission , 1999 .

[67]  Entanglement of Formation and Conditional Information Transmission , 2000, quant-ph/0010041.

[68]  L. Hackl,et al.  Entanglement entropy of squeezed vacua on a lattice , 2015, 1507.01567.

[69]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[70]  R. Parentani,et al.  Inflationary spectra and partially decohered distributions , 2005, astro-ph/0505379.

[71]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[72]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[73]  Andreas Winter,et al.  Squashed Entanglement, $$\mathbf {k}$$k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2014, 1410.4184.

[74]  Giacomo De Palma,et al.  Gaussian optimizers for entropic inequalities in quantum information , 2018, Journal of Mathematical Physics.

[75]  A toy model for time evolving QFT on a lattice with controllable chaos , 2018, 1803.02396.

[76]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[77]  F. Illuminati,et al.  Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems , 2006, quant-ph/0609178.

[78]  Robert Koenig The conditional entropy power inequality for Gaussian quantum states , 2013, 1304.7031.