Identification of the receptor component of the IκBα–ubiquitin ligase

[1]  A. Ciechanover,et al.  The ubiquitin system , 2000, Nature Medicine.

[2]  E. Zandi,et al.  IKK-γ is an essential regulatory subunit of the IκB kinase complex , 1998, Nature.

[3]  P. Baeuerle,et al.  IKAP is a scaffold protein of the IκB kinase complex , 1998, Nature.

[4]  G. Courtois,et al.  Complementation Cloning of NEMO, a Component of the IκB Kinase Complex Essential for NF-κB Activation , 1998, Cell.

[5]  S. Elledge,et al.  The role of protein stability in the cell cycle and cancer. , 1998, Biochimica et biophysica acta.

[6]  D. Thomas,et al.  A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. , 1998, Molecular cell.

[7]  M. Tyers,et al.  Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. , 1998, Genes & development.

[8]  S. Ghosh,et al.  Signal transduction through NF-κB , 1998 .

[9]  G. Struhl,et al.  Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb , 1998, Nature.

[10]  A. Ciechanover,et al.  Inhibition of NF‐κB cellular function via specific targeting of the IκB‐ubiquitin ligase , 1997 .

[11]  Mike Rothe,et al.  IκB Kinase-β: NF-κB Activation and Complex Formation with IκB Kinase-α and NIK , 1997 .

[12]  Matthias Mann,et al.  IKK-1 and IKK-2: Cytokine-Activated IκB Kinases Essential for NF-κB Activation , 1997 .

[13]  E. Zandi,et al.  The IκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for IκB Phosphorylation and NF-κB Activation , 1997, Cell.

[14]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[15]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[16]  A. Varshavsky The ubiquitin system. , 1997, Trends in biochemical sciences.

[17]  David M. Rothwarf,et al.  A cytokine-responsive IκB kinase that activates the transcription factor NF-κB , 1997, Nature.

[18]  D. Goeddel,et al.  Identification and Characterization of an IκB Kinase , 1997, Cell.

[19]  A. Shevchenko,et al.  Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. , 1997, Rapid communications in mass spectrometry : RCM.

[20]  M. A. Jabbar,et al.  Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. , 1997, Virology.

[21]  David Baltimore,et al.  NF-κB: Ten Years After , 1996, Cell.

[22]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[23]  R. Vierstra,et al.  Identification of a Family of Closely Related Human Ubiquitin Conjugating Enzymes (*) , 1995, The Journal of Biological Chemistry.

[24]  A. Ciechanover,et al.  Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Maniatis,et al.  Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. , 1995, Genes & development.

[26]  M. Hochstrasser Ubiquitin-dependent protein degradation. , 1996, Annual review of genetics.

[27]  A. Baldwin,et al.  THE NF-κB AND IκB PROTEINS: New Discoveries and Insights , 1996 .