CHAPTER 3 – Sources of Noise in Three-Dimensional Microscopical Data Sets

[1]  David R. Sandison,et al.  Quantitative Fluorescence Imaging with Laser Scanning Confocal Microscopy , 1990 .

[2]  David A. Agard,et al.  Three-Dimensional Analysis of Biological Specimens Utilizing Image Processing Techniques , 1980, Photonics West - Lasers and Applications in Science and Engineering.

[3]  G. S. Kino,et al.  Real‐time confocal scanning optical microscope , 1988 .

[4]  S. Hua,et al.  Spatial and dynamic changes in intracellular Ca2+ measured by confocal laser-scanning microscopy in bullfrog sympathetic ganglion cells , 1991, Neuroscience Research.

[5]  T. Wilson,et al.  The Role of the Pinhole in Confocal Imaging Systems , 1990 .

[6]  David A. Agard,et al.  Manipulation, Display, and Analysis of Three-Dimensional Biological Images , 1990 .

[7]  C J Oliver,et al.  Experimental and theoretical comparison of photon-counting and current measurements of light intensity. , 1971, Applied optics.

[8]  A. Brown,et al.  Optical microscopy for biology : Edited by Brian Herman and Ken Jacobson; Wiley-Liss; New York, 1990; xviii + 658 pages; $95.00 , 1991 .

[9]  R. Glaeser,et al.  Limitations to significant information in biological electron microscopy as a result of radiation damage. , 1971, Journal of ultrastructure research.

[10]  Marvin H. White,et al.  Characterization of surface channel CCD image arrays at low light levels , 1974 .

[11]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[12]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[13]  W. Gunter,et al.  Optical devices to increase photocathode quantum efficiency. , 1970, Applied optics.

[14]  A. Wright A Monte Carlo Simulation of Photomultiplier Resolution , 1987, IEEE Transactions on Nuclear Science.

[15]  D. Rawlins,et al.  The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data , 1991 .

[16]  J Bryan,et al.  Validation of an imaging system: steps to evaluate and validate a microscope imaging system for quantitative studies. , 1989, Methods in cell biology.

[17]  M. F. Tompsett,et al.  Charge-coupled imaging devices: Design considerations , 1971 .

[18]  H Gundlach,et al.  Working with the confocal scanning UV‐laser microscope: specific DNA localization at high sensitivity and multiple‐parameter fluorescence , 1991, Journal of microscopy.

[19]  David H. Lumb,et al.  Noise reduction techniques for CCD image sensors , 1982 .

[20]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[21]  Paul P. Webb,et al.  Photon counting modules using RCA silicon avalanche photodiodes , 1989 .

[22]  G. J. Brakenhoff,et al.  Confocal scanning light microscopy with high aperture immersion lenses , 1979 .

[23]  David E. Clapham,et al.  Optical modifications enabling simultaneous confocal imaging with dyes excited by ultraviolet‐ and visible‐wavelength light , 1993 .

[24]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[25]  D. Agard Optical sectioning microscopy: cellular architecture in three dimensions. , 1984, Annual review of biophysics and bioengineering.

[26]  J. B. Oke,et al.  A practical multiple reflection technique for improving the quantum efficiency of photomultiplier tubes. , 1968, Applied optics.

[27]  James B. Pawley,et al.  Fundamental and practical limits in confocal light microscopy , 1991 .

[28]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[29]  D A Agard,et al.  Quantitative analysis of electrophoretograms: a mathematical approach to super-resolution. , 1981, Analytical biochemistry.

[30]  Cooled CCD Systems for Biomedical and Other Applications , 1988 .

[31]  G. A. Morton,et al.  PULSE HEIGHT RESOLUTION OF HIGH GAIN FIRST DYNODE PHOTOMULTIPLIERS , 1968 .

[32]  J. R. Prescott,et al.  A statistical model for photomultiplier single-electron statistics , 1966 .

[33]  Morley Blouke,et al.  Charge-coupled devices in astronomy , 1982 .

[34]  W. Eisenman Tektronix Type 122 Preamplifier Modification , 1965 .

[35]  J. Wampler,et al.  Quantitative fluorescence microscopy using photomultiplier tubes and imaging detectors. , 1989, Methods in cell biology.

[36]  A. Rose,et al.  Television Pickup Tubes and the Problem of Vision , 1948 .

[37]  J. Pawley,et al.  An Introduction to Practical Confocal Microscopy , 1992 .

[38]  G. E. Smith,et al.  Charge coupled semiconductor devices , 1970, Bell Syst. Tech. J..

[39]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[40]  F. Robben Noise in the measurement of light with photomultipliers. , 1971, Applied optics.

[41]  D. M. Shotton,et al.  Confocal scanning optical microscopy and its applications for biological specimens , 1989 .

[42]  D. Agard,et al.  The use of a charge-coupled device for quantitative optical microscopy of biological structures. , 1987, Science.

[43]  J G Rarity,et al.  Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching. , 1986, Applied optics.

[44]  R. Aikens,et al.  Chapter 16 Solid-State Imagers for Microscopy , 1988 .

[45]  R. J. Kansy,et al.  Response of a correlated double sampling circuit to 1/f noise , 1980 .

[46]  J. Sedat,et al.  Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. , 1982, Science.

[47]  A. Lacaita,et al.  Four-hundred-picosecond single-photon timing with commercially available avalanche photodiodes , 1988 .

[48]  Alan Boyde,et al.  The tandem scanning reflected light microscope , 1968 .