Tuning the photoresponse of quantum dot infrared photodetectors across the 8–12μm atmospheric window via rapid thermal annealing

We report on wide spectral tunability of narrow-band (Δλ∕λ∼12%) InAs∕In0.15Ga0.85As∕GaAs quantum dot-in-a-well infrared photodetectors using postgrowth rapid thermal annealing. The well resolved absorption and photocurrent peaks shift from 8to11.6μm by annealing the devices at 800°C for up to 4min. Upon annealing, the dot confinement potential becomes shallower and the tunneling probability increases, resulting not only in an increased responsivity but also in an increased dark current. The combined effect is to reduce detector detectivity from 1.1×1010cmHz1∕2W−1 at 8μmto3×109cmHz1∕2W−1 at 11μm (T=77K). Our results demonstrate that spectral tunability from 8to12μm can be achieved while maintaining good detector performance.

[1]  P. Harrison,et al.  Effects of rapid thermal annealing on device characteristics of InGaAs∕GaAs quantum dot infrared photodetectors , 2006 .

[2]  S. Fafard,et al.  Intermixing in quantum-dot ensembles with sharp adjustable shells , 1999 .

[3]  Luke R. Wilson,et al.  Intraband relaxation via polaron decay in InAs self-assembled quantum dots , 2004 .

[4]  N. Ledentsov,et al.  Structural and optical properties of InAs–GaAs quantum dots subjected to high temperature annealing , 1996 .

[5]  Sanjay Krishna,et al.  Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors , 2003 .

[6]  Xiaojun Liu,et al.  Proton implantation and rapid thermal annealing effects on GaAs/AlGaAs quantum well infrared photodetectors , 1999 .

[7]  Dark Current in Quantum Dot Infrared Photodetectors , 2000 .

[8]  P. G. Piva,et al.  Manipulating the energy levels of semiconductor quantum dots , 1999 .

[9]  G. Karunasiri,et al.  VACANCY-ENHANCED INTERMIXING IN HIGHLY STRAINED INGAAS/GAAS MULTIPLE QUANTUM WELL PHOTODETECTOR , 1999 .

[10]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[11]  Harald Schneider,et al.  Quantum Well Infrared Photodetectors: Physics and Applications , 2006 .

[12]  Luke R. Wilson,et al.  Effects of alloy intermixing on the lateral confinement potential in InAs/GaAs self-assembled quantum dots probed by intersublevel absorption spectroscopy , 2007 .

[13]  C. Jagadish,et al.  Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots , 1996 .

[14]  Luke R. Wilson,et al.  Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony , 2007 .

[15]  Luke R. Wilson,et al.  Stark shift of the spectral response in quantum dots-in-a-well infrared photodetectors , 2007 .

[16]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[17]  M. S. Skolnick,et al.  The polaronic nature of intraband relaxation in InAs/GaAs self-assembled quantum dots , 2005 .

[18]  Joe C. Campbell,et al.  High detectivity InAs quantum dot infrared photodetectors , 2004 .

[19]  M. Hopkinson,et al.  Tuning the structural and optical properties of 1.3-μm InAs/GaAs quantum dots by a combined InAlAs and GaAs strained buffer layer , 2003 .

[20]  Xavier Marcadet,et al.  Spectral cross-talk in dual-band quantum well infrared detectors , 2006 .

[21]  John H. Marsh,et al.  A universal damage induced technique for quantum well intermixing , 1998 .

[22]  Andreas Stintz,et al.  Three-color (λp1∼3.8 μm, λp2∼8.5 μm, and λp3∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector , 2003 .

[23]  Yasuhiko Arakawa,et al.  Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons , 1999 .

[24]  E. Li,et al.  Effect of interdiffusion of quantum well infrared photodetector , 1996 .

[25]  M. Korkusinski,et al.  Detailed characterization of a systematic set of quantum dot infrared photodetectors , 2003 .

[26]  Chennupati Jagadish,et al.  Tuning of detection wavelength of quantum-well infrared photodetectors by quantum-well intermixing , 2001 .