Study of Broadband Cryogenic DC-Contact RF MEMS Switches

A dielectric-free DC-contact RF microelectromechanical system (MEMS) switch is designed and tested at room temperature and cryogenic temperatures. The switch demonstrates a 1-¿ contact resistance and 2 fF up-state capacitance at room temperature, with an insertion-loss less than 0.4 dB up to 50 GHz and less than 0.9 dB up to 75 GHz. The isolation is better than 24 dB up to 50 GHz and 18 dB up to 75 GHz at room temperature. At a cryogenic temperature of 1.6 K, the switch has an insertion loss less than 0.6 dB with isolation better than 24 dB up to 50 GHz. The effects of cryogenic temperatures on deformation of the cantilever beam, actuation voltage, and RF performance have been noted. The theoretical and experimental results of the switch performance are presented and compared.

[1]  J. Volakis,et al.  Effect of nanoscale heating on electrical transport in RF MEMS switch contacts , 2005, Journal of Microelectromechanical Systems.

[2]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[3]  Y. Hijazi,et al.  A switched high-Tc superconductor microstrip resonator using a MEM switch , 2003 .

[4]  N. S. Barker,et al.  A cryogenic broadband DC contact RF MEMS switch , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[5]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  E. Kita,et al.  Elastic behaviors of high density nanocrystalline gold prepared by gas deposition method , 2001 .

[7]  C.L. Goldsmith,et al.  Temperature variation of actuation voltage in capacitive MEMS switches , 2005, IEEE Microwave and Wireless Components Letters.

[8]  Gabriel M. Rebeiz,et al.  Distributed MEMS true-time delay phase shifters and wide-band switches , 1998 .

[9]  Y. Vlasov,et al.  Cryogenic Pull-Down Voltage of Microelectromechanical Switches , 2008, Journal of Microelectromechanical Systems.

[10]  E.M. Prophet,et al.  Highly-selective electronically-tunable cryogenic filters using monolithic, discretely-switchable MEMS capacitor arrays , 2005, IEEE Transactions on Applied Superconductivity.

[11]  N. S. Barker,et al.  Mechanical properties of sacrificial polymers used in RF-MEMS applications , 2006 .

[12]  N. Scott Barker,et al.  Realization of low-stress Au cantilever beams , 2007 .

[13]  Gabriel M. Rebeiz,et al.  Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates , 2004, IEEE transactions on microwave theory and techniques.

[14]  Jean-Philippe Polizzi,et al.  Lifetime characterization of capacitive RF MEMS switches , 2005, SPIE MOEMS-MEMS.

[15]  Robert B. Hammond,et al.  Superconducting microwave filter systems for cellular telephone base stations , 2004, Proceedings of the IEEE.

[16]  Jan Mehner,et al.  Investigations of rf shunt airbridge switches among different environmental conditions , 2004 .

[17]  T. Vaha-Heikkila,et al.  Characterization of CMOS Compatible RF MEMS Switch at Cryogenic Temperatures , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[18]  Gabriel M. Rebeiz,et al.  A 20-50 GHz reconfigurable matching network for power amplifier applications , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[19]  P. H. Woerlee,et al.  Influence of grain boundaries and surface Debye temperature on the electrical resistance of thin gold films , 1984 .

[20]  E. Papandreou,et al.  Charging of radiation induced defects in RF MEMS dielectric films , 2006, Microelectron. Reliab..

[21]  N.S. Barker,et al.  Distributed MEMS tunable matching network using minimal-contact RF-MEMS varactors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[22]  G. S. Murty,et al.  Hardness-temperature relationships in metals , 1973 .

[23]  A. Kingon,et al.  Cryogenic Performance of RF MEMS Switch Contacts , 2008, Journal of Microelectromechanical Systems.

[24]  C. Goldsmith,et al.  Acceleration of Dielectric Charging in RF MEMS Capacitive Switches , 2006, IEEE Transactions on Device and Materials Reliability.

[25]  Gabriel M. Rebeiz,et al.  A 12-18-GHz three-pole RF MEMS tunable filter , 2005, IEEE Transactions on Microwave Theory and Techniques.