Formation of optical flux lattices for ultra cold atoms

We explore the optical flux lattices produced for ultra-cold atoms in the radiation field when both the atom-light coupling and the detuning exhibit an oscillatory behavior. We analyze not only the magnetic flux but also the geometric vector potential generating the flux, as well as the accompanying geometric scalar potential. We show how to deal with the gauge-dependent singularities of the Aharonov-Bohm (AB) type appearing in the vector potentials for the optical flux lattices. We present a way to calculate the continuous magnetic flux through the elementary cell via the singularities of the vector potential inside the cell. The analysis is illustrated with a square optical flux lattice. We present a way of creating such a lattice using the Raman transitions induced by a set of properly chosen polarization-dependent standing waves propagating at a right angle and containing a time-phase difference.

[1]  V. Lembessis,et al.  Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .

[2]  Robert B. Laughlin,et al.  Nobel Lecture: Fractional quantization , 1999 .

[3]  J Ruseckas,et al.  Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.

[4]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[5]  Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta , 2004, cond-mat/0412015.

[6]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.

[7]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[9]  D. Lidar,et al.  Geometric phases in adiabatic open quantum systems , 2005 .

[10]  J. Dalibard,et al.  Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.

[11]  G. Nienhuis,et al.  Geometric potentials for subrecoil dynamics , 1998 .

[12]  Moody,et al.  Realizations of magnetic-monopole gauge fields: Diatoms and spin precession. , 1986, Physical review letters.

[13]  I. Spielman Raman processes and effective gauge potentials , 2009, 0905.2436.

[14]  Aharonov,et al.  Origin of the geometric forces accompanying Berry's geometric potentials. , 1992, Physical review letters.

[15]  Spin Hall effects for cold atoms in a light-induced gauge potential. , 2006, Physical review letters.

[16]  J. Ruseckas,et al.  Light-induced effective magnetic fields for ultracold atoms in planar geometries , 2005, quant-ph/0511226.

[17]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[18]  J. M. Luttinger The Effect of a Magnetic Field on Electrons in a Periodic Potential , 1951 .

[19]  J. Dalibard,et al.  Practical scheme for a light-induced gauge field in an atomic Bose gas , 2008, 0811.3961.

[20]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[21]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[22]  M. Olshanii,et al.  Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice. , 1996, Physical review letters.

[23]  Zee Non-Abelian gauge structure in nuclear quadrupole resonance. , 1988, Physical review. A, General physics.

[24]  P Zoller,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[25]  A. Hemmerich,et al.  Elastic Scattering of Rubidium Atoms by Two Crossed Standing Waves , 1992 .

[26]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[27]  N. Cooper Optical flux lattices for ultracold atomic gases. , 2011, Physical review letters.

[28]  W. Phillips,et al.  Bose-Einstein condensate in a uniform light-induced vector potential. , 2008, Physical review letters.

[29]  N. Cooper Rapidly rotating atomic gases , 2008, 0810.4398.

[30]  Hiroyasu Koizumi,et al.  The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics , 2003 .

[31]  J. Dalibard,et al.  Optical flux lattices for two-photon dressed states , 2011, 1106.0820.

[32]  S. Dutta,et al.  Tunneling Dynamics and Gauge Potentials in Optical Lattices , 1999 .

[33]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[34]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[35]  N. Cooper,et al.  Measuring the superfluid fraction of an ultracold atomic gas. , 2009, Physical review letters.

[36]  Klaus von Klitzing The quantized hall effect , 1984 .

[37]  J. Dalibard,et al.  Gauge fields for ultracold atoms in optical superlattices , 2009, 0910.4606.

[38]  E. Mueller Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids , 2004, cond-mat/0404306.

[39]  A. Fetter Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.

[40]  A. Kolovsky Creating artificial magnetic fields for cold atoms by photon-assisted tunneling , 2010, 1006.5270.

[41]  A. Hemmerich,et al.  Staggered-vortex superfluid of ultracold bosons in an optical lattice. , 2007, Physical review letters.