Formation of optical flux lattices for ultra cold atoms
暂无分享,去创建一个
[1] V. Lembessis,et al. Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .
[2] Robert B. Laughlin,et al. Nobel Lecture: Fractional quantization , 1999 .
[3] J Ruseckas,et al. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.
[4] I. B. Spielman,et al. Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.
[5] Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta , 2004, cond-mat/0412015.
[6] M. Lukin,et al. Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.
[7] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[8] Immanuel Bloch,et al. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .
[9] D. Lidar,et al. Geometric phases in adiabatic open quantum systems , 2005 .
[10] J. Dalibard,et al. Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.
[11] G. Nienhuis,et al. Geometric potentials for subrecoil dynamics , 1998 .
[12] Moody,et al. Realizations of magnetic-monopole gauge fields: Diatoms and spin precession. , 1986, Physical review letters.
[13] I. Spielman. Raman processes and effective gauge potentials , 2009, 0905.2436.
[14] Aharonov,et al. Origin of the geometric forces accompanying Berry's geometric potentials. , 1992, Physical review letters.
[15] Spin Hall effects for cold atoms in a light-induced gauge potential. , 2006, Physical review letters.
[16] J. Ruseckas,et al. Light-induced effective magnetic fields for ultracold atoms in planar geometries , 2005, quant-ph/0511226.
[17] Qian Niu,et al. Berry phase effects on electronic properties , 2009, 0907.2021.
[18] J. M. Luttinger. The Effect of a Magnetic Field on Electrons in a Periodic Potential , 1951 .
[19] J. Dalibard,et al. Practical scheme for a light-induced gauge field in an atomic Bose gas , 2008, 0811.3961.
[20] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[21] Sandro Stringari,et al. Theory of ultracold atomic Fermi gases , 2007, 0706.3360.
[22] M. Olshanii,et al. Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice. , 1996, Physical review letters.
[23] Zee. Non-Abelian gauge structure in nuclear quadrupole resonance. , 1988, Physical review. A, General physics.
[24] P Zoller,et al. Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.
[25] A. Hemmerich,et al. Elastic Scattering of Rubidium Atoms by Two Crossed Standing Waves , 1992 .
[26] D. Bohm,et al. Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .
[27] N. Cooper. Optical flux lattices for ultracold atomic gases. , 2011, Physical review letters.
[28] W. Phillips,et al. Bose-Einstein condensate in a uniform light-induced vector potential. , 2008, Physical review letters.
[29] N. Cooper. Rapidly rotating atomic gases , 2008, 0810.4398.
[30] Hiroyasu Koizumi,et al. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics , 2003 .
[31] J. Dalibard,et al. Optical flux lattices for two-photon dressed states , 2011, 1106.0820.
[32] S. Dutta,et al. Tunneling Dynamics and Gauge Potentials in Optical Lattices , 1999 .
[33] P. Zoller,et al. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.
[34] Baptiste Battelier,et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.
[35] N. Cooper,et al. Measuring the superfluid fraction of an ultracold atomic gas. , 2009, Physical review letters.
[36] Klaus von Klitzing. The quantized hall effect , 1984 .
[37] J. Dalibard,et al. Gauge fields for ultracold atoms in optical superlattices , 2009, 0910.4606.
[38] E. Mueller. Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids , 2004, cond-mat/0404306.
[39] A. Fetter. Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.
[40] A. Kolovsky. Creating artificial magnetic fields for cold atoms by photon-assisted tunneling , 2010, 1006.5270.
[41] A. Hemmerich,et al. Staggered-vortex superfluid of ultracold bosons in an optical lattice. , 2007, Physical review letters.