Improvements in the treatment of stress constraints in structural topology optimization problems

Topology optimization of continuum structures is a relatively new branch of the structural optimization field. Since the basic principles were first proposed by Bendsoe and Kikuchi in 1988, most of the work has been dedicated to the so-called maximum stiffness (or minimum compliance) formulations. However, since a few years different approaches have been proposed in terms of minimum weight with stress (and/or displacement) constraints. These formulations give rise to more complex mathematical programming problems, since a large number of highly non-linear (local) constraints must be taken into account. In an attempt to reduce the computational requirements, in this paper, we propose different alternatives to consider stress constraints and some ideas about the numerical implementation of these algorithms. Finally, we present some application examples.

[1]  Fermín Navarrina,et al.  An efficient MP algorithm for structural shape optimization problems , 2001 .

[2]  José París López Restricciones en tensión y minimización del peso una metodología general para la optimización topológica de estructuras , 2011 .

[3]  M. Bendsøe,et al.  Topology optimization of continuum structures with local stress constraints , 1998 .

[4]  J. Martins,et al.  Brazil On Structural Optimization Using Constraint Aggregation , 2005 .

[5]  José París Restricciones en tensión y minimización del peso una metodología general para la optimización topológica de estructuras , 2007 .

[6]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[7]  Ignasi Colominas Ezponda,et al.  Topology optimization of structures: A minimum weight approach with stress constraints , 2005, Adv. Eng. Softw..

[8]  I. Colominas,et al.  Block aggregation of stress constraints in topology optimization of structures , 2007, Adv. Eng. Softw..

[9]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[10]  Ignasi Colominas Ezponda,et al.  A minimum weight FEM formulation for Structural TopologicalOptimization with local stress constraints , 2005 .

[11]  Andrej Cherkaev,et al.  Optimal design of three-dimensional axisymmetric elastic structures , 1996 .

[12]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[13]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[14]  J. Par,et al.  Global Versus Local Statement Of StressConstraints In Topology Optimization OfContinuum Structures , 2007 .

[15]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[16]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[17]  G. Cheng,et al.  ε-relaxed approach in structural topology optimization , 1997 .