Local structure of liquid gallium under pressure

In situ high energy X-ray pair distribution function (PDF) measurements, microtomography and reverse Monte Carlo simulations were used to characterize the local structure of liquid gallium up to 1.9 GPa. This pressure range includes the well-known solid-solid phase transition from Ga-I to Ga-II at low temperature. In term of previous research, the local structure of liquid gallium within this domain was suggested a mixture of two local structures, Ga I and Ga II, based on fitting experimental PDF to known crystal structure, with a controversy. However, our result shows a distinctly different result that the local structure of liquid gallium resembles the atomic arrangement of both gallium phase II and III (the high pressure crystalline phase). A melting mechanism is proposed for Ga, in which the atomic structure of phase Ι breaks up at the onset of melting, providing sufficient free volume for atoms to rearrange, to form the melt.

[1]  T. Iitaka,et al.  First-principles study of liquid gallium at ambient and high pressure. , 2011, The Journal of chemical physics.

[2]  K. Chapman,et al.  Optimizing high-pressure pair distribution function measurements in diamond anvil cells , 2010 .

[3]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[4]  Kenneth F. Kelton,et al.  Structural study of supercooled liquid transition metals. , 2007, The Journal of chemical physics.

[5]  S. Ayrinhac,et al.  Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  D. Turnbull,et al.  ON THE FREE-VOLUME MODEL OF THE LIQUID-GLASS TRANSITION. , 1970 .

[7]  P. Jóvári,et al.  A new version of the RMC++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses , 2007 .

[8]  G. Lee,et al.  Local structure of liquid Ti: Ab initio molecular dynamics study. , 2008, The Journal of chemical physics.

[9]  Fumiko Yonezawa,et al.  Glass Transition , 1990, Int. J. High Perform. Comput. Appl..

[10]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[11]  Frank Westferro,et al.  High-pressure x-ray tomography microscope: Synchrotron computed microtomography at high pressure and temperature , 2005 .

[12]  L. Belliard,et al.  Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature. , 2015, Ultrasonics.

[13]  S. Luo,et al.  Study of liquid gallium at high pressure using synchrotron x-ray , 2012 .

[14]  J. Donohue,et al.  A refinement of the crystal structure of gallium , 1962 .

[15]  A. P. Hammersley,et al.  FIT2D: a multi-purpose data reduction, analysis and visualization program , 2016 .

[16]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[17]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[18]  D. Turnbull,et al.  Free‐Volume Model of the Amorphous Phase: Glass Transition , 1961 .

[19]  Zhi-Qiang Li,et al.  High-pressure bct to fcc structural transformation in Ga , 2000 .

[20]  H. Saitoh,et al.  Energy dispersive x-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure , 2012 .

[21]  Noel Jakse,et al.  Ab initio molecular dynamics simulations of local structure of supercooled Ni. , 2004, The Journal of chemical physics.

[22]  L. Bosio,et al.  Crystal structures of Ga(II) and Ga(III) , 1978 .

[23]  Signature of nearly icosahedral structures in liquid and supercooled liquid copper , 2006, cond-mat/0602239.

[24]  N. Jakse,et al.  Prediction of the local structure of liquid and supercooled tantalum , 2004 .

[25]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[26]  W. Holzapfel,et al.  Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa , 1997 .

[27]  V. Heine Crystal structure of gallium metal , 1968 .

[28]  A. Jayaraman,et al.  Fusion curves and polymorphic transitions of the group III elements—Aluminum, gallium, indium and thallium—At high pressures , 1963 .

[29]  A. L. Hines,et al.  Determination of the coordination number of liquid metals near the melting point , 1985 .

[30]  A. Cicco Phase Transitions in Confined Gallium Droplets , 1998 .

[31]  A. Gewirth,et al.  The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions. , 2016, Journal of the American Chemical Society.

[32]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  N. Jakse,et al.  Molecular-dynamics study of liquid nickel above and below the melting point. , 2005, The Journal of chemical physics.

[34]  K. Chapman,et al.  Hydrostatic low-range pressure applications of the Paris–Edinburgh cell utilizing polymer gaskets for diffuse X-ray scattering measurements , 2007, Journal of applied crystallography.

[35]  Thomas M Truskett,et al.  Free volume in the hard sphere liquid , 1998, Molecular Physics.

[36]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[37]  Alain Pasturel,et al.  Local order of liquid and supercooled zirconium by ab initio molecular dynamics. , 2003, Physical review letters.

[38]  M I McMahon,et al.  Structural complexity in gallium under high pressure: relation to alkali elements. , 2004, Physical review letters.

[39]  D. Holland-Moritz,et al.  Short-range order of stable and undercooled liquid titanium , 2007 .

[40]  K. Chapman,et al.  Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements , 2007 .

[41]  Henry Eyring,et al.  A Theory of Liquid Structure , 1937 .

[42]  Xianghui Xiao,et al.  Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography , 2008, Proceedings of the National Academy of Sciences.

[43]  V. Simonet,et al.  Icosahedral short-range order in deeply undercooled metallic melts. , 2002, Physical review letters.

[44]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[45]  J. Finney,et al.  Modelling the structures of amorphous metals and alloys , 1977, Nature.

[46]  Kobayashi Kazuaki,et al.  High-pressure bct-fcc phase transition in Ga , 1998 .

[47]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[48]  W. H. Hoather The density and coefficient of expansion of liquid gallium over a wide range of temperature , 1936 .