Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. III. Electron affinities of first-row atoms

The computation of electron affinities of atoms and molecules is one of the most demanding tasks in quantum chemistry. This is because the electronic structures of neutral systems compared to their respective anions are qualitatively different and thus errors in the computed correlation energies, in general, do not cancel. Correlation energies obtained from traditional configuration interaction (CI) expansions, however, are known to converge notoriously slowly due to the presence of interelectronic cusps in the exact wave function. We compute the electron affinities of the first-row atoms using the recently proposed (explicitly correlated) r12-[multireference configuration interaction (single double) MR-CI(SD)] and r12-MR-ACPF (averaged coupled-pair functional) methods which take care of the interelectronic cusps by means of terms being linear in the interelectronic distances (r12). The reference spaces and basis sets (which are further augmented with diffuse functions) are taken from our former study on ...

[1]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[2]  Robert J. Gdanitz,et al.  A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .

[3]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[4]  R. Bartlett,et al.  On the accuracy of molecular properties by coupled-cluster methods for some difficult examples: Oxygen atom, iron atom, and cyano radical , 1994 .

[5]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[6]  G. Drake High precision variational calculations for the 1s21S state of H − and the 1s21s, 1s2s 1s and 1s2s 3s states of helium , 1988 .

[7]  W. Lakin On Singularities in Eigenfunctions , 1965 .

[8]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[9]  C. Fischer Convergence studies of MCHF calculations for Be and Li , 1993 .

[10]  P. Reynolds,et al.  Electron affinity of fluorine: A quantum Monte Carlo study , 1986 .

[11]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[12]  Russell M. Pitzer,et al.  A progress report on the status of the COLUMBUS MRCI program system , 1988 .

[13]  Delsart,et al.  High-resolution determination of the electron affinity of fluorine and bromine using crossed ion and laser beams. , 1989, Physical review. A, General physics.

[14]  W. C. Lineberger,et al.  Electron affinities of B, Al, Bi, and Pb , 1981 .

[15]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[16]  G. Scuseria,et al.  A coupled‐cluster study of the electron affinity of the oxygen atom , 1992 .

[17]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[18]  R. T. Pack,et al.  Cusp Conditions for Molecular Wavefunctions , 1966 .

[19]  Sasaki,et al.  Ab initio determination of accurate electron affinities of B, C, O, and F. , 1991, Physical review letters.

[20]  R. Bartlett,et al.  Accurate numerical orbital MBPT/CC study of the electron affinity of fluorine and the dissociation energy of hydrogen fluoride , 1986 .

[21]  J. Noga,et al.  A CCSD(T)-R12 study of the ten-electron systems Ne, F-, HF, H2O, NH3, NH4+ and CH4 , 1997 .

[22]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[23]  H. Kleindienst,et al.  NONRELATIVISTIC ENERGIES FOR THE BE ATOM : DOUBLE-LINKED HYLLERAAS-CI CALCULATION , 1998 .

[24]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[25]  T. Dunning,et al.  Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine , 1982 .

[26]  D. Feldmann Infrared photodetachment measurements near thresholds of C , 1977 .

[27]  J. Olsen,et al.  Large MCHF calculations on the electron affinity of boron , 1990 .

[28]  Froese Fischer C,et al.  Multiconfiguration-Hartree-Fock calculations for the electron affinity of boron. , 1995, Physical Review A. Atomic, Molecular, and Optical Physics.

[29]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[30]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[31]  J. Noga,et al.  CH5+ : THE STORY GOES ON. AN EXPLICITLY CORRELATED COUPLED-CLUSTER STUDY , 1997 .

[32]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[33]  W. C. Lineberger,et al.  Threshold photodetachment of H- , 1991, Physical review. A, Atomic, molecular, and optical physics.

[34]  K. T. Chung,et al.  Electron affinity of lithium , 1992 .

[35]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. II. Ground-state energies of first-row atoms and positive atomic ions , 1998 .

[36]  G. Scuseria A coupled cluster study of the classical barrier height of the F+H2→FH+H reaction , 1991 .

[37]  J. Rychlewski,et al.  Explicitly correlated Gaussian functions in variational calculations: The ground state of the beryllium atom. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  Andersen,et al.  Laser photodetachment measurement of the electron affinity of atomic oxygen. , 1985, Physical review. A, General physics.

[39]  Péter G. Szalay,et al.  New Versions of Approximately Extensive Corrected Multireference Configuration Interaction Methods , 1996 .

[40]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[41]  L. Adamowicz,et al.  ELECTRON AFFINITY OF HYDROGEN, DEUTERIUM, AND TRITIUM : A NONADIABATIC VARIATIONAL CALCULATION USING EXPLICITLY CORRELATED GAUSSIAN BASIS FUNCTIONS , 1997 .

[42]  U. Kaldor,et al.  The Fock‐space coupled‐cluster method: Electron affinities of the five halogen elements with consideration of triple excitations , 1993 .

[43]  R. Bartlett Recent advances in coupled-cluster methods , 1997 .

[44]  Hans Lischka,et al.  Implementation of an electronic structure program system on the CYBER 205 , 1985 .

[45]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .