Low discrepancy sequences for solving the Boltzmann equation
暂无分享,去创建一个
[1] Helmut Neunzert,et al. Low Discrepancy Methods for the Boltzmann Equation , 1988 .
[2] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[3] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[4] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[5] Kenichi Nanbu,et al. Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .
[6] Jörg M. Wills,et al. Berichtigung zu der Arbeit „Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen” , 1976 .
[7] H. Niederreiter,et al. Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen , 1975 .
[8] Edmund Hlawka,et al. A Transformation of Equidistributed Sequences , 1972 .
[9] Christian Lécot. An algorithm for generating low discrepancy sequences on vector computers , 1989, Parallel Comput..
[10] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[11] Tai Tsun Wu,et al. Exact solutions of the Boltzmann equation , 1977 .