A three-dimensional carbon nano-network for high performance lithium ion batteries

[1]  H. Ming,et al.  Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications , 2014 .

[2]  Jonathan J. Travis,et al.  Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries , 2013, Nanotechnology.

[3]  Lijia Pan,et al.  3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices , 2013 .

[4]  K. Edström,et al.  High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries , 2013 .

[5]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[6]  Jun Shen,et al.  A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries , 2013 .

[7]  Xiaogang Zhang,et al.  Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. , 2013, Chemistry.

[8]  T. Yiping,et al.  Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries , 2012 .

[9]  Shui-Tong Lee,et al.  Growth of TiO2 nanorod arrays on reduced graphene oxide with enhanced lithium-ion storage , 2012 .

[10]  Ronggui Yang,et al.  Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni–Sn nanowire networks , 2012 .

[11]  Chunzhong Li,et al.  Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries , 2012 .

[12]  Yogendra Kumar Mishra,et al.  Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance , 2012, Advanced materials.

[13]  K. Müllen,et al.  3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[14]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[15]  Rodney S. Ruoff,et al.  Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. , 2012, Nano letters.

[16]  Yanwu Zhu,et al.  Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. , 2012, Nano letters.

[17]  Won‐Hee Ryu,et al.  Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries , 2012 .

[18]  Christopher S. Johnson,et al.  Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO2 Nanotubes , 2012 .

[19]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[20]  Y. C. Lee,et al.  Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. , 2011, ACS applied materials & interfaces.

[21]  W. Jaegermann,et al.  Synthesis and characterization of three-dimensional carbon foams–LiFePO4 composites , 2011 .

[22]  M. Roberts,et al.  Conformal electrodeposition of manganese dioxide onto reticulated vitreous carbon for 3D microbattery applications , 2011 .

[23]  M. Wohlfahrt‐Mehrens,et al.  TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.

[24]  Zaiping Guo,et al.  TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance , 2011 .

[25]  Young‐Jun Kim,et al.  Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries , 2011 .

[26]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[27]  Justin C. Lytle,et al.  The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D , 2011 .

[28]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[29]  Ping Liu,et al.  Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material , 2011 .

[30]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[31]  Dong‐Wan Kim,et al.  Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries , 2010, Nanotechnology.

[32]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[33]  Yang-Kook Sun,et al.  High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. , 2010, ACS nano.

[34]  M. Wagemaker,et al.  Lithium Storage in Amorphous TiO2 Nanoparticles , 2010 .

[35]  J. A. Menéndez,et al.  Exploring New Routes in the Synthesis of Carbon Xerogels for Their Application in Electric Double-Layer Capacitors† , 2010 .

[36]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[37]  S. Kaskel,et al.  High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors , 2010 .

[38]  T. Hyeon,et al.  Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. , 2010, Chemical communications.

[39]  G. Cao,et al.  TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation , 2009 .

[40]  Philipp Adelhelm,et al.  Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[41]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[42]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[43]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[44]  G. F. Ortiz,et al.  Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes , 2009 .

[45]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[46]  T. Kudo,et al.  Colloidal crystal-derived nanoporous electrode materials of Cut SWNTs-assembly and TiO2/SWNTs nanocomposite. , 2008, The journal of physical chemistry. B.

[47]  U. V. Varadaraju,et al.  Crystallite Size Constraints on Lithium Insertion into Brookite TiO2 , 2008 .

[48]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[49]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[50]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[51]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[52]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[53]  Wen‐Cui Li,et al.  Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor , 2006 .

[54]  R. Dominko,et al.  Citrate-Derived Carbon Nanocoatings for Poorly Conducting Cathode A Detailed Study Using TiO 2 Substrate Materials , 2006 .

[55]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[56]  Chunyang Ma,et al.  Al13-pillared anatase TiO2 as a cathode for a lithium battery , 2004 .

[57]  Hai-chao Liang,et al.  Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors , 2004 .

[58]  G. Kearley,et al.  Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.

[59]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[60]  J. Saniger,et al.  Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template , 2001 .

[61]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[62]  Robert F. Nelson,et al.  Power requirements for batteries in hybrid electric vehicles , 2000 .

[63]  D. Wilkinson,et al.  Conductivity of electrolytes for rechargeable lithium batteries , 1991 .

[64]  A. Jansen,et al.  Electrochemical Modeling the Impedance of a Lithium-Ion Positive Electrode Single Particle , 2013 .

[65]  P. Sarro,et al.  Characterization of low temperature deposited atomic layer deposition TiO2 for MEMS applications , 2013 .

[66]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[67]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[68]  Juan Bisquert,et al.  Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte , 2003 .

[69]  D. Collins,et al.  Power Sources 3 , 1971 .