Protostellar collapse and fragmentation using an MHD gadget

Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the ‘Boss and Bodenheimer standard isothermal test case’, to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the ‘magnetic cushioning effect’, where the magnetic field is wound up to form a ‘cushion’ between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.

[1]  R. Klessen,et al.  ERRATUM: “UNDERSTANDING SPATIAL AND SPECTRAL MORPHOLOGIES OF ULTRACOMPACT H ii REGIONS” (2010, ApJ, 719, 831) , 2010 .

[2]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[3]  R. Klessen,et al.  UNDERSTANDING SPATIAL AND SPECTRAL MORPHOLOGIES OF ULTRACOMPACT H ii REGIONS , 2010, 1003.4998.

[4]  R. Klessen,et al.  MODELING COLLAPSE AND ACCRETION IN TURBULENT GAS CLOUDS: IMPLEMENTATION AND COMPARISON OF SINK PARTICLES IN AMR AND SPH , 2010, 1001.4456.

[5]  R. Klessen,et al.  H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION , 2010, 1001.2470.

[6]  R. Teyssier,et al.  Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation , 2009, Astronomy and Astrophysics.

[7]  K. Dolag,et al.  SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES , 2009, 0911.3327.

[8]  P. Hennebelle,et al.  Disk formation during collapse of magnetized protostellar cores , 2009, 0909.3190.

[9]  Daniel J. Price Smoothed Particle Magnetohydrodynamics – IV. Using the vector potential , 2009, 0909.2469.

[10]  Axel Brandenburg,et al.  Magnetic field evolution in simulations with Euler potentials , 2009, 0907.1906.

[11]  A. Whitworth,et al.  The effect of Poisson noise on SPH calculations , 2009 .

[12]  K. Dolag,et al.  Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.

[13]  Daniel J. Price,et al.  Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.

[14]  R. Klein,et al.  THE EFFECTS OF RADIATIVE TRANSFER ON LOW-MASS STAR FORMATION , 2009, 0904.2004.

[15]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[16]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[17]  Shu-ichiro Inutsuka,et al.  Magnetohydrodynamics of Population III Star Formation , 2008, 0803.1224.

[18]  Daniel J. Price,et al.  The effect of magnetic fields on star cluster formation , 2008, 0801.3293.

[19]  R. Teyssier,et al.  Protostellar collapse: a comparison between smoothed particle hydrodynamics and adaptative mesh refinement calculations , 2008, Astronomy & Astrophysics.

[20]  R. Teyssier,et al.  Magnetic processes in a collapsing dense core II. Fragmentation. Is there a fragmentation crisis , 2007, 0709.2887.

[21]  P. Hennebelle,et al.  Magnetic processes in a collapsing dense core I. Accretion and ejection , 2007, 0709.2886.

[22]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[23]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[24]  Daniel J. Price,et al.  magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.

[25]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[26]  A. Whitworth,et al.  Adaptive smoothing lengths in SPH , 2007, astro-ph/0701909.

[27]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[28]  R. Teyssier,et al.  A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .

[29]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[30]  Ralph E. Pudritz,et al.  Outflows and Jets from Collapsing Magnetized Cloud Cores , 2005, astro-ph/0508374.

[31]  T. Hanawa,et al.  Collapse and fragmentation of rotating magnetized clouds — I. Magnetic flux-spin relation , 2005, astro-ph/0506439.

[32]  T. Hanawa,et al.  Collapse and fragmentation of rotating magnetized clouds — II. Binary formation and fragmentation of first cores , 2005, astro-ph/0506440.

[33]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[34]  U. Ziegler,et al.  Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code , 2005 .

[35]  R. Klessen,et al.  The Stellar Mass Spectrum from Non-Isothermal Gravoturbulent Fragmentation , 2004, astro-ph/0410351.

[36]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[37]  R. Klein,et al.  Embedding Lagrangian Sink Particles in Eulerian Grids , 2003, astro-ph/0312612.

[38]  K. Tomisaka,et al.  First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores , 2003, astro-ph/0311339.

[39]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[40]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.

[41]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[42]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement , 2001, Astronomy & Astrophysics.

[43]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[44]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[45]  R. Gabbasov,et al.  Gravitational Collapse and Fragmentation of Molecular Cloud Cores with GADGET-2 , 2001 .

[46]  S. Desch,et al.  The Magnetic Decoupling Stage of Star Formation , 2001 .

[47]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[48]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[49]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[50]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[51]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[52]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[53]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[54]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[55]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[56]  I. Bonnell,et al.  Modelling accretion in protobinary systems , 1995, astro-ph/9510149.

[57]  D. Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1994, astro-ph/9505073.

[58]  T. Mouschovias,et al.  Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .

[59]  T. Mouschovias Magnetic braking, ambipolar diffusion, cloud cores, and star formation: Natural length scales and protostellar masses , 1991 .

[60]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[61]  G. J. Phillips Three-dimensional numerical simulations of collapsing isothermal magnetic gas clouds-non uniform initial fields , 1986 .

[62]  G. J. Phillips Three-dimensional numerical simulations of collapsing, isothermal magnetic gas clouds , 1986 .

[63]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[64]  T. Mouschovias,et al.  Magnetic braking of an aligned rotator during star formation: An exact, time-dependent solution , 1980 .

[65]  P. Bodenheimer,et al.  Fragmentation in a rotating protostar - A comparison of two three-dimensional computer codes , 1979 .

[66]  T. Mouschovias,et al.  The angular momentum problem and magnetic braking - an exact time-dependent solution , 1979 .

[67]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[68]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[69]  T. Mouschovias Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II. Results. , 1976 .

[70]  L. Spitzer,et al.  Star formation in magnetic dust clouds , 1956 .

[71]  J. Klapp-Escribano,et al.  The gravitational collapse of Plummer protostellar clouds , 2010 .

[72]  R. Banerjee Jets and Outflows from Collapsing Objects , 2009 .

[73]  A. Whitworth,et al.  Fragmentation of magnetized cloud cores , 2004 .

[74]  M. S. Matthews,et al.  Protostars & planets II , 1985 .