Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing

Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS) is now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy, showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma proteobacteria. Basic Local Alignment Search Tool (BLASTn) analysis in parallel, reported ca. five times more species than those actually comprising the in silico sample. Both GENIUSand BLAST analyses of saliva samples identified major genera comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate system for identification and quantification of bacterial species and/or strains in metagenomic samples.

[1]  Rob Knight,et al.  Direct sequencing of the human microbiome readily reveals community differences , 2010, Genome Biology.

[2]  L. Chambrone,et al.  Association among stress, salivary cortisol levels, and chronic periodontitis , 2013, Journal of periodontal & implant science.

[3]  T. Watanabe,et al.  Detection of Mycoplasma salivarium and Mycoplasma fermentans in synovial fluids of temporomandibular joints of patients with disorders in the joints. , 1998, FEMS immunology and medical microbiology.

[4]  T. Köse,et al.  Periodontal infections and pre-term low birth weight: a case-control study. , 2005, Journal of clinical periodontology.

[5]  Alla Lapidus,et al.  A Bioinformatician's Guide to Metagenomics , 2008, Microbiology and Molecular Biology Reviews.

[6]  M. Pignatelli,et al.  The oral metagenome in health and disease , 2011, The ISME Journal.

[7]  Wen-Han Yu,et al.  The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information , 2010, Database J. Biol. Databases Curation.

[8]  Kun Tang,et al.  Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches. , 2009, Analytical biochemistry.

[9]  D. Malamud,et al.  Saliva as a diagnostic fluid. , 1992, BMJ.

[10]  David Hernández,et al.  Study of inter- and intra-individual variations in the salivary microbiota , 2010, BMC Genomics.

[11]  B. Birren,et al.  Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. , 2012, Genome research.

[12]  S. Socransky,et al.  Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. , 2009, The Journal of Periodontology.

[13]  S. Socransky,et al.  Microbial complexes in subgingival plaque. , 1998, Journal of clinical periodontology.

[14]  Brain metastasis of hepatocellular carcinoma detected after liver transplantation. , 2004, Arquivos de gastroenterologia.

[15]  Brian J. Bennett,et al.  Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease , 2011, Nature.

[16]  Tatiana A. Tatusova,et al.  RefSeq microbial genomes database: new representation and annotation strategy , 2013, Nucleic Acids Res..

[17]  W. Yam,et al.  Microbiology of Odontogenic Bacteremia: beyond Endocarditis , 2009, Clinical Microbiology Reviews.

[18]  Mi Zhou,et al.  Investigation of the Effect of Type 2 Diabetes Mellitus on Subgingival Plaque Microbiota by High-Throughput 16S rDNA Pyrosequencing , 2013, PloS one.

[19]  Enrique Carbonell,et al.  Bacteremia originating in the oral cavity. A review. , 2008, Medicina oral, patologia oral y cirugia bucal.

[20]  S. Socransky,et al.  Difficulties encountered in the search for the etiologic agents of destructive periodontal diseases. , 1987, Journal of clinical periodontology.

[21]  C. Quince,et al.  Accurate determination of microbial diversity from 454 pyrosequencing data , 2009, Nature Methods.

[22]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[23]  Susan M. Huse,et al.  Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health , 2011, BMC Medical Genomics.

[24]  J C Gunsolley,et al.  Evidence of a substantial genetic basis for risk of adult periodontitis. , 2000, Journal of periodontology.

[25]  Robert L Hanson,et al.  Periodontal disease and mortality in type 2 diabetes. , 2005, Diabetes care.

[26]  H. Kuramitsu,et al.  Porphyromonas gingivalis Vesicles Enhance Attachment, and the Leucine-Rich Repeat BspA Protein Is Required for Invasion of Epithelial Cells by “Tannerella forsythia” , 2006, Infection and Immunity.

[27]  S. Dowd,et al.  Comparative Analysis of Salivary Bacterial Microbiome Diversity in Edentulous Infants and Their Mothers or Primary Care Givers Using Pyrosequencing , 2011, PloS one.

[28]  J. Simons,et al.  A new arenavirus in a cluster of fatal transplant-associated diseases. , 2008, The New England journal of medicine.

[29]  C. Quince,et al.  Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. , 2013, Environmental microbiology.

[30]  P. François,et al.  The salivary microbiome, assessed by a high-throughput and culture-independent approach , 2011 .

[31]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[32]  D. Alland,et al.  A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. , 2007, Journal of microbiological methods.

[33]  H. Marcotte,et al.  Oral Microbial Ecology and the Role of Salivary Immunoglobulin A , 1998, Microbiology and Molecular Biology Reviews.

[34]  George M. Weinstock,et al.  Genomic approaches to studying the human microbiota , 2012, Nature.

[35]  W. Wade,et al.  The oral microbiome in health and disease. , 2013, Pharmacological research.

[36]  Kang Ning,et al.  Saliva microbiomes distinguish caries-active from healthy human populations , 2011, The ISME Journal.

[37]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[38]  E. Young,et al.  Similarity in saliva cortisol measures in monozygotic twins and the influence of past major depression , 2000, Biological Psychiatry.

[39]  Richard A. Moore,et al.  Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. , 2012, Genome research.

[40]  A. Salamov,et al.  Use of simulated data sets to evaluate the fidelity of metagenomic processing methods , 2007, Nature Methods.

[41]  Rob Knight,et al.  The mind-body-microbial continuum , 2011, Dialogues in clinical neuroscience.

[42]  Susan M. Huse,et al.  Pyrosequencing analysis of the Oral Microflora of healthy adults , 2008, Journal of dental research.

[43]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Socransky,et al.  Microbial etiological agents of destructive periodontal diseases. , 1994, Periodontology 2000.

[45]  Haixu Tang,et al.  Comparing Bacterial Communities Inferred from 16s Rrna Gene Sequencing and Shotgun Metagenomics , 2011, Pacific Symposium on Biocomputing.

[46]  F. Dewhirst,et al.  Bacterial Diversity in Human Subgingival Plaque , 2001, Journal of bacteriology.

[47]  L. Ratnayake,et al.  Aggregatibacter aphrophilus in a patient with recurrent empyema: a case report , 2011, Journal of medical case reports.

[48]  S. Pergam,et al.  Pacemaker Lead Infection Secondary to Haemophilus Parainfluenzae , 2004, Pacing and clinical electrophysiology : PACE.

[49]  F E Dewhirst,et al.  Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. , 2008, Oral microbiology and immunology.

[50]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[51]  S. Akifusa,et al.  Oral Health and Mortality Risk from Pneumonia in the Elderly , 2008, Journal of dental research.

[52]  J. Izard,et al.  The Human Oral Microbiome , 2010, Journal of bacteriology.

[53]  J. Gordon,et al.  Homeostasis and Inflammation in the Intestine , 2010, Cell.

[54]  Daniel J. Wilson,et al.  Transforming clinical microbiology with bacterial genome sequencing , 2012, Nature Reviews Genetics.

[55]  M. Trevisan,et al.  Periodontal disease and risk of cerebrovascular disease: the first national health and nutrition examination survey and its follow-up study. , 2000, Archives of internal medicine.

[56]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[57]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[58]  M. Posner,et al.  The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects , 2005, Journal of Translational Medicine.

[59]  R. Genco,et al.  A Proposed Model Linking Inflammation to Obesity, Diabetes, and Periodontal Infections. , 2005, Journal of periodontology.

[60]  J. Gilbert,et al.  Metagenomics - a guide from sampling to data analysis , 2012, Microbial Informatics and Experimentation.

[61]  Paul M. Ruegger,et al.  Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. , 2013, Cancer research.

[62]  Chaochun Wei,et al.  Analysis of Oral Microbiota in Children with Dental Caries by PCR-DGGE and Barcoded Pyrosequencing , 2010, Microbial Ecology.

[63]  Shen Hu,et al.  Human saliva proteome analysis and disease biomarker discovery , 2007, Expert review of proteomics.

[64]  R. H. Parker,et al.  HAEMOPHILUS PARAINFLUENZAE AND INFLUENZAE ENDOCARDITIS: A REVIEW OF FORTY CASES , 1977, Medicine.

[65]  Zhengyuan O. Wang,et al.  Optimizing Read Mapping to Reference Genomes to Determine Composition and Species Prevalence in Microbial Communities , 2012, PloS one.

[66]  J. Slots,et al.  Bacterial and viral pathogens in saliva: disease relationship and infectious risk , 2010, Periodontology 2000.

[67]  Norman Paskin,et al.  Studies on Monitoring and Tracking Genetic Resources: An Executive Summary , 2009, Standards in genomic sciences.

[68]  Mihai Pop,et al.  Bioinformatics for the Human Microbiome Project , 2012, PLoS Comput. Biol..

[69]  David Hernández,et al.  Analysis of the salivary microbiome using culture-independent techniques , 2012, Journal of Clinical Bioinformatics.

[70]  G. Wang,et al.  Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes , 1997, Applied and environmental microbiology.

[71]  M. Odeh,et al.  Multiple liver abscesses after dental treatment. , 2003, Journal of Clinical Gastroenterology.

[72]  Walter C. Willett,et al.  Periodontal Disease, Tooth Loss, and Incidence of Ischemic Stroke , 2003, Stroke.