Thermodynamics of anisotropic triangular magnets with ferro- and antiferromagnetic exchange

We investigate thermodynamic properties like specific heat $c_{V}$ and susceptibility $\chi$ in anisotropic $J_1$-$J_2$ triangular quantum spin systems ($S=1/2$). As a universal tool we apply the finite temperature Lanczos method (FTLM) based on exact diagonalization of finite clusters with periodic boundary conditions. We use clusters up to $N=28$ sites where the thermodynamic limit behavior is already stably reproduced. As a reference we also present the full diagonalization of a small eight-site cluster. After introducing model and method we discuss our main results on $c_V(T)$ and $\chi(T)$. We show the variation of peak position and peak height of these quantities as function of control parameter $J_2/J_1$. We demonstrate that maximum peak positions and heights in N\'eel phase and spiral phases are strongly asymmetric, much more than in the square lattice $J_1$-$J_2$ model. Our results also suggest a tendency to a second side maximum or shoulder formation at lower temperature for certain ranges of the control parameter. We finally explicitly determine the exchange model of the prominent triangular magnets Cs$_2$CuCl$_4$ and Cs$_{2}$CuBr$_{4}$ from our FTLM results.

[1]  B. Schmidt,et al.  The two-dimensional frustrated Heisenberg model on the orthorhombic lattice , 2009, 0908.3442.

[2]  S. Onoda,et al.  Novel Geometrical Frustration Effects in the Two-Dimensional Triangular-Lattice Antiferromagnet NiGa2S4 and Related Compounds , 2010 .

[3]  C. Geibel,et al.  Zn2VO(PO4)2: an S = 1/2 Heisenberg antiferromagnetic square lattice system , 2006 .

[4]  B. Svistunov,et al.  Bold diagrammatic Monte Carlo method applied to fermionized frustrated spins. , 2012, Physical review letters.

[5]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[6]  Jaan Oitmaa,et al.  Series Expansion Methods for Strongly Interacting Lattice Models: Introduction , 2006 .

[7]  H. Schmidt,et al.  Eighth-order high-temperature expansion for general Heisenberg Hamiltonians , 2011, 1112.0953.

[8]  J. Schnack,et al.  Advanced finite-temperature Lanczos method for anisotropic spin systems , 2014, 1405.3068.

[9]  B. Schmidt,et al.  Ordered moment in the anisotropic and frustrated square lattice Heisenberg model , 2011, 1101.1181.

[10]  Rajiv R. P. Singh,et al.  Temperature dependence of the magnetic susceptibility for triangular-lattice antiferromagnets with spatially anisotropic exchange constants , 2004, cond-mat/0410381.

[11]  M. Zhitomirsky,et al.  Interplay of anisotropy and frustration: Triple transitions in a triangular-lattice antiferromagnet , 2008, 0812.3574.

[12]  A. Nakao,et al.  Frustration-Induced Valence-Bond Ordering in a New Quantum Triangular Antiferromagnet Based on [Pd(dmit)_2](Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[13]  J. Wosnitza,et al.  Direct determination of exchange parameters in Cs2CuBr4 and Cs2CuCl4: high-field electron-spin-resonance studies. , 2014, Physical review letters.

[14]  D. Tennant,et al.  Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 observed by neutron scattering , 2003, cond-mat/0307025.

[15]  J. Oitmaa,et al.  High-temperature expansions for the J 1 -J 2 Heisenberg models: Applications to ab initio calculated models for Li 2 VOSiO 4 and Li 2 VOGeO 4 , 2003 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  F. Palacio,et al.  Linear chain antiferromagnetic interactions in Cs2CuCl4 , 1985 .

[18]  D. Tennant,et al.  Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4. , 2001, Physical review letters.

[19]  B. Schmidt,et al.  Quantum fluctuations in anisotropic triangular lattices with ferromagnetic and antiferromagnetic exchange , 2014, 1404.4523.

[20]  Rajiv R. P. Singh,et al.  Low temperature properties of the triangular-lattice antiferromagnet: a bosonic spinon theory , 2012, 1203.3794.

[21]  Finite-temperature properties of doped antiferromagnets , 2000 .

[22]  Lingjun Kong,et al.  Improved Min-Sum Decoding for 2-D Intersymbol Interference Channels , 2014, IEEE Transactions on Magnetics.

[23]  B. Schmidt,et al.  Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model , 2003, cond-mat/0312160.

[24]  C. Geibel,et al.  Magnetic properties of BaCdVO(PO4)2: A strongly frustrated spin-1/2 square lattice close to the quantum critical regime , 2008, 0803.3535.

[25]  R. Kato Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe$_{3}$Sb[Pd(dmit)$_{2}$]$_{2}$ , 2008 .

[26]  Michael E. Fisher,et al.  Linear Magnetic Chains with Anisotropic Coupling , 1964 .

[27]  S. Miyashita,et al.  Phase Transition of the Two-Dimensional Heisenberg Antiferromagnet on the Triangular Lattice , 1984 .

[28]  B. Schmidt,et al.  Magnetocaloric effect in the frustrated square lattice J1-J2 model , 2007, 0705.3094.

[29]  R. Valentí,et al.  Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum antiferromagnet Cs2CuCl4−xBrx , 2010, 1012.2269.