C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES

Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres, the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H2O and CH4 abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C2H2 become prominent for C/O ≥ 1, while the CO abundance remains almost unchanged. Furthermore, a C/O ≥ 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O ≥ 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.

[1]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[2]  B. Fegley,et al.  The Origin of Carbon Monoxide in Neptune's Atmosphere , 1993 .

[3]  T. Barman Identification of Absorption Features in an Extrasolar Planet Atmosphere , 2007, 0704.1114.

[4]  S. Seager,et al.  HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b , 2010, 1004.5121.

[5]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[6]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[7]  Nikku Madhusudhan,et al.  NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE , 2012, 1204.3887.

[8]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[9]  Nikole K. Lewis,et al.  WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b , 2012 .

[10]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[11]  J. E. Stys,et al.  A Transiting Planet of a Sun-like Star , 2006 .

[12]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[13]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[14]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[15]  Aki Roberge,et al.  Stabilization of the disk around β Pictoris by extremely carbon-rich gas , 2006, Nature.

[16]  B. Jackson,et al.  INFRARED ECLIPSES OF THE STRONGLY IRRADIATED PLANET WASP-33b, AND OSCILLATIONS OF ITS HOST STAR , 2012, 1206.0774.

[17]  L. Hebb,et al.  Ground-based detection of thermal emission from the exoplanet WASP-19b ? , 2010 .

[18]  J. Moses,et al.  QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS , 2011, 1106.3525.

[19]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[20]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[21]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[22]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[23]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[24]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[25]  Nikku Madhusudhan,et al.  CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS , 2011, 1109.3183.

[26]  W. F. Huebner,et al.  Molecular equilibrium with condensation. [in astrophysics] , 1990 .

[27]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[28]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[29]  D. Ehrenreich,et al.  TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b , 2008, 0809.1865.

[30]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[31]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[32]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[33]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission - II. CoRoT-Exo-2b: a transiting planet around an active G star , 2008, 0803.3207.

[34]  I. Ribas,et al.  Primary Transit of the Planet HD 189733b at 3.6 and 5.8 μm , 2007, 0711.2142.

[35]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[36]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[37]  L. Observatory,et al.  GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM CoRoT-1b AND WASP-12b , 2011, 1109.5179.

[38]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[39]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[40]  Drake Deming,et al.  STUDYING THE ATMOSPHERE OF THE EXOPLANET HAT-P-7b VIA SECONDARY ECLIPSE MEASUREMENTS WITH EPOXI, SPITZER, AND KEPLER , 2009, 0912.2132.

[41]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[42]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[43]  Harm Jan Habing,et al.  Asymptotic giant branch stars , 2004 .

[44]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[45]  M. Markevitch,et al.  SLOSHING OF THE MAGNETIZED COOL GAS IN THE CORES OF GALAXY CLUSTERS , 2011, 1108.4427.

[46]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[47]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[48]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[49]  Nikole K. Lewis,et al.  Warm Spitzer Photometry of XO-4b, HAT-P-6b and HAT-P-8b , 2011, 1111.5858.

[50]  Curtis S. Cooper,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .

[51]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[52]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[53]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[54]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[55]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[56]  J. Larimer The effect of C/O ratio on the condensation of planetary material , 1975 .

[57]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[58]  P. Kabath,et al.  GROUND-BASED NEAR-INFRARED OBSERVATIONS OF THE SECONDARY ECLIPSE OF CoRoT-2b , 2010, 1001.3060.

[59]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[60]  M. Tomasko,et al.  Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data , 2010 .

[61]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[62]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[63]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[64]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[65]  Tristan Guillot,et al.  An analysis of the CoRoT-2 system: A young spotted star and its inflated giant planet , 2010, 1010.1078.

[66]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[67]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[68]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[69]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[70]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[71]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[72]  A. Collier Cameron,et al.  H-band thermal emission from the 19-h period planet WASP-19b , 2010, 1002.1947.

[73]  The Juno Mission , 2010, Proceedings of the International Astronomical Union.

[74]  G. Marcy,et al.  CARBON AND OXYGEN IN NEARBY STARS: KEYS TO PROTOPLANETARY DISK CHEMISTRY , 2011, 1106.5449.

[75]  S. Seager,et al.  Extrasolar Giant Planets under Strong Stellar Irradiation , 1998 .

[76]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE , 2010, 1011.1019.

[77]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[78]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[79]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[80]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[81]  C. Watson,et al.  z′-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b , 2012, 1206.3585.

[82]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[83]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[84]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[85]  J. Tennyson,et al.  A H13CN/HN13C linelist, model atmospheres and synthetic spectra for carbon stars , 2008, 0807.0717.

[86]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[87]  J. Fortney,et al.  THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1001.0976.

[88]  Travis Barman,et al.  GROUND-BASED, NEAR-INFRARED EXOSPECTROSCOPY. II. TENTATIVE DETECTION OF EMISSION FROM THE EXTREMELY HOT JUPITER WASP-12b , 2012, 1201.1023.

[89]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[90]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[91]  Alfred Krabbe,et al.  Observing Exoplanets with SOFIA , 2010 .

[92]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[93]  L. Lara,et al.  Photochemistry of Planetary Atmospheres , 2002 .

[94]  P. Drossart,et al.  Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources , 2002 .

[95]  L. Hebb,et al.  A DETAILED SPECTROPOLARIMETRIC ANALYSIS OF THE PLANET-HOSTING STAR WASP-12, , 2010, 1007.3082.

[96]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[97]  R. C. Gilman On the composition of circumstellar grains. , 1969 .

[98]  Sushil K. Atreya,et al.  Atmospheric moons Galileo would have loved , 2010, Proceedings of the International Astronomical Union.

[99]  I. Skillen,et al.  Thermal emission from WASP-33b, the hottest known planet , 2011, 1101.2432.

[100]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[101]  W. Demore,et al.  Photochemistry of Planetary Atmospheres , 1998 .

[102]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[103]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[104]  N. Madhusudhan,et al.  JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS , 2012, 1207.2770.

[105]  B. Hansen On the Absorption and Redistribution of Energy in Irradiated Planets , 2008, 0801.2972.

[106]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[107]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[108]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[109]  C. Helling,et al.  Gas phase mean opacities for varying (M/H), N/O, and C/O , 2009, 0906.0296.

[110]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[111]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[112]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[113]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[114]  A. Collier Cameron,et al.  The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm , 2009, 0911.5087.

[115]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[116]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[117]  L. J. Richardson,et al.  On the Dayside Thermal Emission of Hot Jupiters , 2005 .

[118]  Adam Burrows,et al.  MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS , 2011, 1102.5089.

[119]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[120]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[121]  Joseph L. Hora,et al.  A ccepted forpublication in The A strophysicalJournal D etection of T herm alE m ission of X O -2b: E vidence for a W eak Tem perature Inversion , 2022 .