Effect of chemical and hydrostatic pressure on the coupled magnetostructural transition of Ni-Mn-In Heusler alloys

Ni-Mn-In magnetic shape-memory Heusler alloys exhibit generally a large thermal hysteresis at their first-order martensitic phase transition which hinder a technological application in magnetic refrigeration. By optimizing the Cu content in Ni$_2$Cu$_x$Mn$_{1.4-x}$In$_{0.6}$, we obtained a thermal hysteresis of the martensitic phase transition in Ni$_{2}$Cu$_{0.2}$Mn$_{1.2}$In$_{0.6}$ of only 6 K. We can explain this very small hysteresis by an almost perfect habit plane at the interface of martensite and austenite phases. Application of hydrostatic pressure does not reduce the hysteresis further, but shifts the martensitic transition close to room temperature. The isothermal entropy change does not depend on warming or cooling protocols and is pressure independent. Experiments in pulsed-magnetic fields on Ni$_{2}$Cu$_{0.2}$Mn$_{1.2}$In$_{0.6}$ find a reversible magnetocaloric effect with a maximum adiabatic temperature change of -13 K.

[1]  N. van Dijk,et al.  Reversible low-field magnetocaloric effect in Ni-Mn-In-based Heusler alloys , 2019, Physical Review Materials.

[2]  L. Mañosa,et al.  Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy , 2019, Acta Materialia.

[3]  C. Felser,et al.  Improved magnetostructural and magnetocaloric reversibility in magnetic Ni-Mn-In shape-memory Heusler alloy by optimizing the geometric compatibility condition , 2019, Physical Review Materials.

[4]  C. Esling,et al.  Tuning the Reversible Magnetocaloric Effect in Ni–Mn–In‐Based Alloys through Co and Cu Co‐Doping , 2019, Advanced Electronic Materials.

[5]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[6]  C. Felser,et al.  Reversible adiabatic temperature change in the shape memory Heusler alloy Ni2.2Mn0.8Ga : An effect of structural compatibility , 2018, Physical Review Materials.

[7]  A. Pathak,et al.  Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect , 2018, Nature Communications.

[8]  C. Felser,et al.  Adaptive modulation in the Ni2Mn1.4In0.6 magnetic shape-memory Heusler alloy , 2016, Physical Review B.

[9]  C. Felser,et al.  Adaptive modulation in the Ni 2 Mn 1 . 4 In 0 . 6 magnetic shape-memory Heusler alloy , 2018 .

[10]  C. Felser,et al.  Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity , 2017 .

[11]  L. Mañosa,et al.  Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys , 2017 .

[12]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[13]  C. Felser,et al.  Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys , 2017 .

[14]  C. Felser,et al.  Robust Bain distortion in the premartensite phase of a platinum-substituted Ni2MnGa magnetic shape memory alloy , 2016, Nature Communications.

[15]  C. Felser,et al.  Heusler 4.0: Tunable Materials , 2016, 1612.05947.

[16]  Konstantin P. Skokov,et al.  Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials , 2016 .

[17]  Mahmud Tareq Hassan Khan,et al.  Anomalous transport properties of N i 2 M n 1 − x C r x Ga Heusler alloys at the martensite-austenite phase transition , 2016 .

[18]  C. Felser,et al.  Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. , 2015, Nature materials.

[19]  C. Felser,et al.  Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys , 2015, 1506.00266.

[20]  C. Felser,et al.  Strain behavior and lattice dynamics in Ni50Mn35In15 , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  J. Wosnitza,et al.  Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15 , 2015, 1501.04430.

[22]  O. Gutfleisch,et al.  Large reversible magnetocaloric effect in Ni-Mn-In-Co , 2015 .

[23]  C. Felser,et al.  Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study , 2014 .

[24]  T. Takagi,et al.  High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films , 2014 .

[25]  Lei Zhang,et al.  Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system , 2014 .

[26]  L. Mañosa,et al.  Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler alloy , 2014 .

[27]  C. Felser,et al.  Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. , 2014, Physical review letters.

[28]  Richard D. James,et al.  Enhanced reversibility and unusual microstructure of a phase-transforming material , 2013, Nature.

[29]  K. K. Nielsen,et al.  Material properties and modeling characteristics for MnFeP1−xAsx materials for application in magnetic refrigeration , 2013 .

[30]  O. Gutfleisch,et al.  Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4 , 2013 .

[31]  C. Felser,et al.  Large zero-field cooled exchange-bias in bulk Mn2PtGa. , 2013, Physical review letters.

[32]  T. Lograsso,et al.  Spin-valve-like magnetoresistance in Mn2NiGa at room temperature. , 2012, Physical review letters.

[33]  V. Franco,et al.  The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models , 2012 .

[34]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[35]  J. Yi,et al.  Large exchange bias after zero-field cooling from an unmagnetized state. , 2011, Physical review letters.

[36]  R. James,et al.  The Direct Conversion of Heat to Electricity Using Multiferroic Alloys , 2011 .

[37]  L. Chen,et al.  A large and reproducible metamagnetic shape memory effect in polycrystalline Ni45Co5Mn37In13 Heusler alloy , 2010 .

[38]  A. Khandelwal,et al.  Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni 49 CuMn 34 In 16 alloy , 2010 .

[39]  M. Shirai,et al.  Role of electronic structure in the martensitic phase transition of Ni2Mn(1+x)Sn(1-x) studied by hard-X-ray photoelectron spectroscopy and Ab initio calculation. , 2010, Physical review letters.

[40]  E. Brück,et al.  On the determination of the magnetic entropy change in materials with first-order transitions , 2009 .

[41]  H. Morito,et al.  Magnetic properties of Ni 50 Mn 34.8 In 15.2 probed by Mössbauer spectroscopy , 2009 .

[42]  A. Nayak,et al.  Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy , 2009, 1006.0067.

[43]  X. Moya,et al.  Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys , 2007, 0712.3651.

[44]  K. Ishida,et al.  Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys , 2007 .

[45]  P. Ranke,et al.  Magnetocaloric effect in , 2006 .

[46]  S. Okamoto,et al.  Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy , 2006 .

[47]  S. Okamoto,et al.  Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy , 2006 .

[48]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[49]  J. Schilling,et al.  Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In , 1981 .