The integrated genomic and epigenomic landscape of brainstem glioma

[1]  BIG Data Center,et al.  Database Resources of the BIG Data Center in 2019 , 2019, Nucleic Acids Res..

[2]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[3]  Till Acker,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[4]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[5]  Yang Zhang,et al.  Database Resources of the BIG Data Center in 2018 , 2017, Nucleic Acids Res..

[6]  David Haussler,et al.  TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal. , 2017, Cancer research.

[7]  Kun Mu,et al.  Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma , 2017, Cancer cell.

[8]  Ashley R. Woodfin,et al.  Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas , 2017, Nature Medicine.

[9]  Timothy L. Tickle,et al.  STAR-Fusion: Fast and Accurate Fusion Transcript Detection from RNA-Seq , 2017, bioRxiv.

[10]  Qian Zhang,et al.  GSA: Genome Sequence Archive* , 2017, Genom. Proteom. Bioinform..

[11]  David T. W. Jones,et al.  Pediatric high-grade glioma: biologically and clinically in need of new thinking , 2016, Neuro-oncology.

[12]  A. Gonzalez-Perez,et al.  OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations , 2016, Genome Biology.

[13]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[14]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[15]  Roland Eils,et al.  New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs , 2016, Cell.

[16]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[17]  [World Health Organization classification of tumours of the central nervous system: a summary]. , 2016, Zhonghua bing li xue za zhi = Chinese journal of pathology.

[18]  Ranadip Pal,et al.  Erratum: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma , 2015, Nature Medicine.

[19]  Nicholas J. Wang,et al.  Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma , 2015, Nature Medicine.

[20]  Michael P. Schroeder,et al.  In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. , 2015, Cancer cell.

[21]  Z. Reitman Smaller protein, larger therapeutic potential: PPM1D as a new therapeutic target in brainstem glioma. , 2014, Pharmacogenomics.

[22]  Chris Jones,et al.  Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma , 2014, Nature Reviews Cancer.

[23]  C. James,et al.  Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma , 2014, Nature Medicine.

[24]  Chris Jones,et al.  ACVR1 mutations in DIPG: lessons learned from FOP. , 2014, Cancer research.

[25]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[26]  R. McLendon,et al.  Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas , 2014, Nature Genetics.

[27]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[28]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[29]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[30]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[31]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[32]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[33]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[34]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[35]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[36]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[37]  N. Alon,et al.  BRAF-KIAA1549 Fusion Predicts Better Clinical Outcome in Pediatric Low-Grade Astrocytoma , 2011, Clinical Cancer Research.

[38]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[39]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[40]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[41]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[42]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[43]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[44]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[45]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[46]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[48]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[49]  C. Freeman,et al.  Chemotherapy for brain stem gliomas , 1999, Child's Nervous System.

[50]  B. Maria,et al.  Topical Review Article: Brainstem Glioma: I. Pathology, Clinical Features, and Therapy , 1993 .