Deformation rings and images of Galois representations

Let G be a connected reductive almost simple group over the Witt ring W (F) for F a finite field of characteristic p. Let R and R′ be complete noetherian local W (F)-algebras with residue field F. Under a mild condition on p in relation to structural constants of G , we show the following results: (1) Every closed subgroup H of G (R) with full residual image G (F) is a conjugate of a group G (A) for A ⊂ R a closed subring that is local and has residue field F. (2) Every surjective homomorphism G (R) → G (R′) is, up to conjugation, induced from a ring homomorphism R → R′. (3) The identity map on G (R) represents the universal deformation of the representation of the profinite group G (R) given by the reduction map G (R) → G (F). This generalizes results of Dorobisz and Eardley-Manoharmayum and of Manoharmayum, and in addition provides an abstract classification result for closed subgroups of G (R) with residually full image. We provide an axiomatic framework to study this type of question, also for slightly more general G , and we study in the case at hand in great detail what conditions on F or on p in relation to G are necessary for the above results to hold.

[1]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[2]  R. Pink Compact Subgroups of Linear Algebraic Groups , 1998 .

[3]  Robert Steinberg,et al.  Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.

[4]  Barry Mazur,et al.  On $p$-adic analytic families of Galois representations , 1986 .

[5]  Cohomology of finite groups of Lie type, II , 1977 .

[6]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[7]  J. Stix A course on finite flat group schemes and p-divisible groups , 2012 .

[8]  J. Manoharmayum A structure theorem for subgroups of GLn over complete local Noetherian rings with large residual image , 2013, 1304.1196.

[9]  G. Hogeweij Almost-classical Lie algebras. II , 1982 .

[10]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[11]  G. Mislin On the cohomology of finite groups of Lie type , 1992 .

[12]  Serge Lang,et al.  Abelian varieties , 1983 .

[13]  James S. Milne,et al.  Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field , 2017 .

[14]  Gerhard Hiß Die adjungierten Darstellungen der Chevalley-Gruppen , 1984 .

[15]  T. Chinburg,et al.  Inverse problems for deformation rings , 2010, 1012.1290.

[16]  A. Grothendieck,et al.  Étude locale des schémas et des morphismes de schémas , 1964 .

[17]  David Schwein,et al.  Étale Cohomology , 2018, Translations of Mathematical Monographs.

[18]  Nigel Boston,et al.  Explicit deformation of Galois representations , 1991 .

[19]  Nicolas Bourbaki,et al.  Eléments de Mathématique , 1964 .

[20]  R. Tennant Algebra , 1941, Nature.

[21]  A Note on the Automorphic Langlands Group , 2002, Canadian Mathematical Bulletin.

[22]  J. Conway,et al.  Atlas of finite groups : maximal subgroups and ordinary characters for simple groups , 1987 .

[23]  J. Bertin,et al.  Propriétés générales des schémas en groupes , 1970 .

[24]  H. Völklein 1-Cohomology of Chevalley groups , 1989 .

[25]  Robert L. Griess,et al.  Schur multipliers of the known finite simple groups , 1972 .

[26]  B. Mazur Deforming Galois Representations , 1989 .

[27]  Gunter Malle,et al.  Linear Algebraic Groups and Finite Groups of Lie Type , 2011 .

[28]  A. Vasiu Surjectivity Criteria for p-adic Representations , 2002 .

[29]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[30]  B. M. Fulk MATH , 1992 .

[31]  Barbara Schneider,et al.  Basel , 2000 .

[32]  Giovanni Mastrobuoni,et al.  Preliminary Version , 1994 .

[33]  H. Völklein The 1-Cohomology of the Adjoint Module of a Chevalley Group , 1989 .

[34]  Krzysztof Dorobisz The inverse problem for universal deformation rings and the special linear group , 2013, 1308.1346.

[35]  B. Conrad Reductive Group Schemes , 2014 .

[36]  T. Willmore Algebraic Geometry , 1973, Nature.

[37]  J. Bellaiche Images of Pseudo-Representations and Coefficients of Modular Forms modulo p , 2015, 1505.01216.

[38]  M. Larsen Maximality of Galois actions for compatible systems , 1995 .

[39]  R. Steinberg Generators, relations and coverings of algebraic groups, II , 1981 .

[40]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[41]  R. Pink,et al.  Adelic openness for Drinfeld modules in special characteristic , 2009, 1103.3398.

[42]  M. Flach A finiteness theorem for the symmetric square of an elliptic curve , 1992 .

[43]  Robert Steinberg,et al.  Regular elements of semisimple algebraic groups , 1965 .

[44]  Chun Yin Hui On the rationality of algebraic monodromy groups of compatible systems , 2018, Journal of the European Mathematical Society.

[45]  Timothy Eardley,et al.  The inverse deformation problem , 2013, Compositio Mathematica.