A quasi‐static boundary value problem in multi‐surface elastoplasticity: Part 1—Analysis
暂无分享,去创建一个
[1] J. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .
[2] Weimin Han,et al. Computational plasticity : the variational basis and numerical analysis , 1995 .
[3] G. Maugin. The Thermomechanics of Plasticity and Fracture , 1992 .
[4] L. Prandtl,et al. Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1928 .
[5] Jan Valdman,et al. Mathematical and Numerical Analysis of Elastoplastic Material with Multi-Surface Stress-Strain Relation , 2001 .
[6] Claes Johnson,et al. On plasticity with hardening , 1978 .
[7] William Prager,et al. Recent Developments in the Mathematical Theory of Plasticity , 1949 .
[8] J. F. Besseling. A theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep , 1958 .
[9] W. Iwan. A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response , 1966 .
[10] W. Han,et al. Plasticity: Mathematical Theory and Numerical Analysis , 1999 .
[11] Pavel Krejčí,et al. Hysteresis, convexity and dissipation in hyperbolic equations , 1996 .
[12] A. Visintin. Differential models of hysteresis , 1994 .
[13] Zdeněk P. Bažant,et al. Mechanics of solid materials , 1992 .
[14] Ernst Melan,et al. Zur Plastizität des räumlichen Kontinuums , 1938 .
[15] J. Chaboche,et al. Modeling of ratchetting: evaluation of various approaches , 1994 .