Overview of the RFX-mod contribution to the international Fusion Science Program

The RFX-mod device is operated both as a reversed field pinch (RFP), where advanced regimes featuring helical shape develop, and as a tokamak. Due to its flexibility, RFX-mod is contributing to the solution of key issues in the roadmap to ITER and DEMO, including MHD instability control, internal transport barriers, edge transport and turbulence, isotopic effect, high density limit and three-dimensional (3D) non-linear MHD modelling. This paper reports recent advancements in the understanding of the self-organized helical states, featuring a strong electron transport barrier, in the RFP configuration; the physical mechanism driving the residual transport at the barrier has been investigated. Following the first experiments with deuterium as the filling gas, new results concerning the isotope effect in the RFP are discussed. Studies on the high density limit show that in the RFP it is related to a toroidal particle accumulation due to the onset of a convective cell. In the tokamak configuration, q(a) regimes down to q(a) = 1.2 have been pioneered, with (2,1) tearing mode (TM) mitigated and (2,1) resistive wall mode (RWM) stabilized: the control of such modes can be obtained both by poloidal and radial sensors. Progress has been made in the avoidance of disruptions due to the (2,1) TM by applying q(a) control, and on the general issue of error field control. The effect of externally applied 3D fields on plasma flow and edge turbulence, sawtooth control and runaway electron decorrelation has been analysed. The experimental program is supported by substantial theoretical activity: 3D non-linear visco-resistive MHD and non-local transport modelling have been advanced; RWMs have been studied by a toroidal MHD kinetic hybrid stability code.

W. A. Cooper | L. Giudicotti | E. Zilli | P. Sonato | T. Luce | T. Luce | C. Li | F. Belli | J. Hanson | S. Hirshman | R. Sánchez | O. Schmitz | L. Frassinetti | B. Esposito | R. White | E. Gaio | R. Piovan | M. Bigi | Yueqiang Liu | R. Paccagnella | T. Bolzonella | G. Marchiori | A. Luchetta | G. Manduchi | L. Marrelli | P. Martin | G. Spizzo | P. Zanca | E. Olofsson | M. Okabayashi | F. Villone | P. Bettini | G. Masi | V. Rigato | A. Ferro | G. Chitarin | N. Marconato | A. Roquemore | V. Antoni | L. Chacón | Y.Q. Liu | D. Spong | M. Takechi | P. Xanthopoulos | J. Jackson | M. Brombin | R. Cavazzana | M. Moresco | D. Mansfield | T. Barbui | L. Carraro | M. Puiatti | O. Schmitz | N. Vianello | M. Zuin | Piero Martin | G. Viesti | M. Agostini | S. Martini | F. Fellin | M. Valisa | F. Ghezzi | L. Sajo-Bohus | J. Sarff | P. Scarin | M. Spolaore | E. Martines | P. Innocente | A. Canton | N. Visonà | D. Terranova | F. Sattin | R. Lorenzini | P. Piovesan | D. Bonfiglio | S. Cappello | D. Escande | A. Fassina | P. Franz | M. Gobbin | F. Auriemma | M. Baruzzo | A. Buffa | B. Chapman | A. Lorenzi | F. Gnesotto | L. Grando | S. Guo | D. Marcuzzi | S. Peruzzo | L. Piron | I. Predebon | G. Rostagni | E. Spada | S. Spagnolo | C. Taliercio | B. Zaniol | L. Zanotto | B. Momo | S. D. Bello | P. Agostinetti | M. Barbisan | M. Battistella | R. Bilel | M. Boldrin | D. Cester | G. Ciaccio | M. D. Palma | S. Deambrosis | R. Delogu | J. Dong | C. Finotti | M. F. Palumbo | W. Gonzales | S. Kiyama | M. Komm | L. Laguardia | Chenguang Li | S. F. Liu | A. Maistrello | D. Marocco | G. Matsunaga | G. Mazzitelli | E. Miorin | N. Patel | M. Pavei | N. Pilan | L. Pigatto | C. Piron | C. Rea | M. Recchia | A. Rizzolo | C. Ruset | A. Ruzzon | H. Sakakita | E. Sartori | A. Scaggion | L. Stevanato | G. Trevisan | G. Urso | M. Valente | M. Veranda | P. Vincenzi | Zhirui Wang | X. Xu | V. Yanovskiy | A. Zamengo | Z.R. Wang | G. Mazzitelli | J. D. Hanson | R. Sánchez | G. De Masi | N. Marconato | W. Cooper | S. Dal Bello | M. Dalla Palma | M. Agostini | J. L. Jackson | P. Bettini | M. Puiatti | R. White | X.Y. Xu | S. Hirshman | J. Dong | A. de Lorenzi | M. Furno Palumbo | S.F. Liu | L. Sajò-Bohus | J. Hanson | L. Sajo-Bohus

[1]  G. Masi,et al.  Lithium wall conditioning by high frequency pellet injection in RFX-mod , 2015 .

[2]  G. Masi,et al.  The isotope effect in the RFX-mod experiment , 2015 .

[3]  O. Schmitz,et al.  Density limit studies in the tokamak and the reversed-field pinch , 2015 .

[4]  Yueqiang Liu,et al.  Physics and Control of External Kink Instabilities with Realistic 3D Boundaries: a Challenge for Modern Experiments and Modeling , 2014 .

[5]  A. Hyatt,et al.  Tokamak operation with safety factor q95 < 2 via control of MHD stability. , 2014, Physical review letters.

[6]  R. Paccagnella Pressure-driven reconnection and quasi periodical oscillations in plasmas , 2014 .

[7]  R. Paccagnella,et al.  Interaction between magnetic boundary and first wall recycling in the reversed field pinch , 2013 .

[8]  L. Marrelli,et al.  3D magnetic fields and plasma rotation in RFX-mod tokamak plasmas , 2013 .

[9]  L. Marrelli,et al.  Heat transport in helical RFX-mod plasmas by electron temperature dynamics from soft-x-ray diagnostics , 2013 .

[10]  L. Marrelli,et al.  Helical equilibrium reconstruction with V3FIT in the RFX-mod Reversed Field Pinch , 2013 .

[11]  L. Chacón,et al.  Experimental-like helical self-organization in reversed-field pinch modeling. , 2013, Physical review letters.

[12]  T. Bolzonella,et al.  Advances in understanding RFX-mod helical plasmas , 2013 .

[13]  L. Chacón,et al.  Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch , 2013 .

[14]  L. Marrelli,et al.  Wall conditioning and density control in the reversed field pinch RFX-mod , 2013 .

[15]  Tommaso Bolzonella,et al.  RFX-mod: A multi-configuration fusion facility for three-dimensional physics studiesa) , 2013 .

[16]  L. Marrelli,et al.  Experimental investigation of electron temperature dynamics of helical states in the RFX-Mod reversed field pinch , 2013 .

[17]  R. Paccagnella,et al.  Experimental observation of microtearing modes in a toroidal fusion plasma. , 2013, Physical review letters.

[18]  R. H. Bulmer,et al.  Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .

[19]  W. A. Cooper,et al.  Overview of the RFX-mod fusion science programme , 2012 .

[20]  G. Spizzo,et al.  Edge topology and flows in the reversed-field pinch , 2012 .

[21]  G. Spizzo,et al.  1 TH / P 2-16 Nonlinear Modeling for Helical Configurations in Toroidal Pinch Systems , 2012 .

[22]  Jeff M. Candy,et al.  Isotope mass and charge effects in tokamak plasmas , 2011 .

[23]  Paolo Innocente,et al.  Equilibrium reconstruction for single helical axis reversed field pinch plasmas , 2011, 1101.2153.

[24]  N. Høiby,et al.  Summary and Perspectives , 2011 .

[25]  F. Sattin,et al.  Microtearing modes in reversed field pinch plasmas. , 2010, Physical review letters.

[26]  L. Carraro,et al.  Experimental particle transport studies by pellet injection in helical equilibria , 2010 .

[27]  L. Marrelli,et al.  Magnetic order and confinement improvement in high-current regimes of RFX-mod with MHD feedback control , 2009 .

[28]  F. Milani,et al.  Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas , 2009 .

[29]  E. A. Lazarus,et al.  V3FIT: a code for three-dimensional equilibrium reconstruction , 2009 .

[30]  R. Piovan,et al.  High density physics in reversed field pinches: comparison with tokamaks and stellarators , 2009 .

[31]  Tommaso Bolzonella,et al.  Current sheets during spontaneous reconnection in a current-carrying fusion plasma , 2009 .

[32]  I. T. Chapman,et al.  Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode , 2008 .

[33]  R. Albanese,et al.  Coupling Between a 3-D Integral Eddy Current Formulation and a Linearized MHD Model for the Analysis of Resistive Wall Modes , 2008, IEEE Transactions on Magnetics.

[34]  L. Frassinetti,et al.  Electron temperature profiles in RFX-mod , 2008 .

[35]  P. Zanca,et al.  Avoidance of tearing modes wall-locking in a reversed field pinch with active feedback coils , 2008 .

[36]  T. Hender,et al.  Locked mode thresholds on the MAST spherical tokamak , 2007 .

[37]  S. Cappello Bifurcation in the MHD behaviour of a self-organizing system: the reversed field pinch (RFP) , 2004 .

[38]  B. E. Chapman,et al.  Overview of quasi-single helicity experiments in reversed field pinches , 2003 .

[39]  T S Taylor,et al.  Sustained stabilization of the resistive-wall mode by plasma rotation in the DIII-D tokamak. , 2001, Physical review letters.

[40]  A. Boozer Error field amplification and rotation damping in tokamak plasmas. , 2001, Physical review letters.

[41]  Escande,et al.  Bifurcation in viscoresistive MHD: the hartmann number and the reversed field pinch , 2000, Physical review letters.

[42]  R. Paccagnella,et al.  Chaos healing by separatrix disappearance and quasisingle helicity states of the reversed field pinch. , 2000, Physical review letters.

[43]  Wendell Horton,et al.  Chaos and Structures in Nonlinear Plasmas , 1996 .

[44]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[45]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .