3D‐Printed Structural Pseudocapacitors

Direct metal laser sintering is used to create 3D hierarchical porous metallic scaffolds which are then functionalized with a co‐electrodeposition of MnO2, Mn2O3, and doped conducting polymer. This approach of functionalizing metal 3D printed scaffolds thus opens new possibilities for structural energy storage devices with enhanced performance and lifetime characteristics.

[1]  Ran Liu,et al.  Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. , 2010, ACS nano.

[2]  Joshua M. Pearce,et al.  Substrate release mechanisms for gas metal arc weld 3D aluminum metal printing , 2014 .

[3]  Leroy Cronin,et al.  3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture , 2014 .

[4]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[5]  Christoph Rau,et al.  Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging. , 2015, Chemical communications.

[6]  S. Nguyen,et al.  Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications , 2014 .

[7]  M. El-Sayed,et al.  Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy , 2015 .

[8]  Khairul Amilin Ibrahim,et al.  Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering , 2016 .

[9]  Li Zhang,et al.  Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. , 2014, ACS applied materials & interfaces.

[10]  Jian Zhou,et al.  Unraveling the Order and Disorder in Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) Nanofilms , 2015 .

[11]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[12]  Nigel P. Brandon,et al.  Lithiation‐Induced Dilation Mapping in a Lithium‐Ion Battery Electrode by 3D X‐Ray Microscopy and Digital Volume Correlation , 2014 .

[13]  Martin Pumera,et al.  Helical 3D‐Printed Metal Electrodes as Custom‐Shaped 3D Platform for Electrochemical Devices , 2016 .

[14]  P. Simon,et al.  Electrode compositions for carbon power supercapacitors , 1999 .

[15]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[16]  Weihua Tang,et al.  MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors , 2014, Scientific Reports.

[17]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[18]  C. Ponce de León,et al.  3D-Printing of Redox Flow Batteries for Energy Storage: A Rapid Prototype Laboratory Cell , 2015 .

[19]  Baohua Li,et al.  Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices , 2013 .

[20]  T. Matsushita,et al.  Evaluation of Mn3s X-ray photoelectron spectroscopy for characterization of manganese complexes , 1995 .

[21]  Jiang,et al.  Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals , 2000, Science.

[22]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[23]  Martin Pumera,et al.  3D-printing technologies for electrochemical applications. , 2016, Chemical Society reviews.

[24]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[25]  R. Crăciun,et al.  Influence of La2O3 promoter on the structure of MnOx/SiO2 catalysts , 1997 .

[26]  Stephen Beirne,et al.  Three dimensional (3D) printed electrodes for interdigitated supercapacitors , 2014 .

[27]  Ziyu Zhang,et al.  Additive manufactured porous titanium structures: Through-process quantification of pore and strut networks , 2014 .

[28]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[29]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[30]  J. Shon,et al.  Synthesis of Ordered Mesoporous Manganese Oxides with Various Oxidation States. , 2015, Journal of Nanoscience and Nanotechnology.

[31]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[32]  Shuai Wang,et al.  Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. , 2014, Nano letters.

[33]  Qiu Yang,et al.  Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance , 2014 .

[34]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[35]  Timothy J Horn,et al.  Overview of Current Additive Manufacturing Technologies and Selected Applications , 2012, Science progress.

[36]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[37]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[38]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[39]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[40]  M. Deepa,et al.  Poly(3,4-ethylenedioxypyrrole) Enwrapped Bi2S3 Nanoflowers for Rigid and Flexible Supercapacitors , 2015 .

[41]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.