Helical Luttinger liquid in topological insulator nanowires.

We derive and analyze the effective low-energy theory for interacting electrons in a cylindrical nanowire made of a strong topological insulator. Three different approaches provide a consistent picture for the band structure, where surface states forming inside the bulk gap correspond to one-dimensional bands indexed by total angular momentum. When a half-integer magnetic flux pierces the nanowire, we find a strongly correlated helical Luttinger liquid topologically protected against weak disorder. We describe how transport experiments can detect this state.