Comparing algorithms, representations and operators for the multi-objective knapsack problem

This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.

[1]  Zbigniew Michalewicz,et al.  Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.

[2]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[3]  Christine L. Mumford-Valenzuela A Simple Approach to Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[4]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[5]  Kiyoshi Tanaka,et al.  Selection, Drift, Recombination, and Mutation in Multiobjective Evolutionary Algorithms on Scalable MNK-Landscapes , 2005, EMO.

[6]  Christine L. Mumford,et al.  Comparing representations and recombination operators for the multi-objective 0/1 knapsack problem , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[7]  C. L. Valenzuela A simple evolutionary algorithm for multi-objective optimization (SEAMO) , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[9]  R. Hinterding Representation, constraint satisfaction and the knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[11]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[12]  Christine L. Mumford Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.

[13]  Robert Hinterding,et al.  Mapping, order-independent genes and the knapsack problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[15]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[16]  Qguhm -DVNLHZLF,et al.  On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .

[17]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[18]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[19]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[20]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.