A molecular simulation approach to the prediction of the morphology of self-assembled nanoparticles in diblock copolymers

Mixing microphase-separating diblock copolymers and nanoparticles can lead to the self-assembly of organic/inorganic hybrid materials that are spatially organized on the nanometre scale. Controlling particle location and patterns within the polymeric matrix domains remains, however, an unmet need. Computer simulation of such systems constitutes an interesting challenge since an appropriate technique would require the capturing of both the formation of the diblock mesophases and the copolymer–particle and particle–particle interactions, which can affect the ultimate structure of the material. In this work we discuss the application of Dissipative Particle Dynamics (DPD) to the study of the distribution of nanoparticles with different degree of functionality and volume fraction in a lamellar microsegregated copolymer template. The DPD parameters of the systems were calculated according to a multi-step modelling approach, i.e., from lower scale (atomistic) simulations. The results show that positioning and ordering of the nanoparticles, as well as the dimensions of the block domains depend on covering extent and volume fraction, in full agreement with experiments. The overall results provide molecular-level information for the rational, a priori design of new polymer–particle nanocomposites with ad hoc, tailored properties.

[1]  Maurizio Fermeglia,et al.  Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .

[2]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[3]  Markus Antonietti,et al.  Hard Templates for Soft Materials: Creating Nanostructured Organic Materials† , 2008 .

[4]  A. Aabloo,et al.  Molecular dynamics simulation of the LiBF4–PEO system containing Al2O3 nanoparticles , 2002 .

[5]  Maurizio Fermeglia,et al.  Polymer-clay nanocomposites: a multiscale molecular modeling approach. , 2007, The journal of physical chemistry. B.

[6]  Seung-Man Yang,et al.  Creating surfactant nanoparticles for block copolymer composites through surface chemistry. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Brédas,et al.  Molecular dynamics simulations of nanocomposites based on poly(epsilon-caprolactone) grafted on montmorillonite clay. , 2005, The journal of physical chemistry. B.

[8]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[9]  Bumjoon J. Kim,et al.  Effect of Polymer Ligand Molecular Weight on Polymer-Coated Nanoparticle Location in Block Copolymers , 2008 .

[10]  G. Lu,et al.  The interlayer swelling and molecular packing in organoclays. , 2005, Journal of colloid and interface science.

[11]  Maurizio Fermeglia,et al.  Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .

[12]  L. Goettler,et al.  Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling ☆ , 2002 .

[13]  M. Fermeglia,et al.  A complete multiscale modelling approach for polymer-clay nanocomposites. , 2009, Chemistry.

[14]  K. Horie,et al.  Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004) , 2004 .

[15]  Maurizio Fermeglia,et al.  Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation , 2004 .

[16]  P. D. Fleming,et al.  Structure and energy of thin films of poly-(1,4-cis-butadiene): A new atomistic approach , 1995 .

[17]  Richard A. Vaia and,et al.  Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers , 2007 .

[18]  Glenn H. Fredrickson,et al.  Tailoring Core-Shell Polymer-Coated Nanoparticles as Block Copolymer Surfactants , 2009 .

[19]  Bumjoon J. Kim,et al.  Control of nanoparticle location in block copolymers. , 2005, Journal of the American Chemical Society.

[20]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[21]  T. Emrick,et al.  Pearls of wisdom: stringing nanoparticles and polymers into new assemblies and materials. , 2009, ACS nano.

[22]  K. Katti,et al.  Molecular interactions in intercalated organically modified clay and clay–polycaprolactam nanocomposites: Experiments and modeling , 2006 .

[23]  M. Lísal,et al.  Interplay between microscopic and macroscopic phase separations in ternary polymer melts: Insight from mesoscale modelling , 2009 .

[24]  M. Kunz,et al.  Colloidal gold dispersions in polymeric matrices , 1993 .

[25]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[26]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[27]  Bumjoon J. Kim,et al.  Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template , 2006 .

[28]  S. Glotzer,et al.  Hydrodynamics and microphase ordering in block copolymers: are hydrodynamics required for ordered phases with periodicity in more than one dimension? , 2004, The Journal of chemical physics.

[29]  Bumjoon J. Kim,et al.  Nanoparticle surfactants as a route to bicontinuous block copolymer morphologies. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[30]  H. Heinz,et al.  Cleavage Energy of Alkylammonium-Modified Montmorillonite and Relation to Exfoliation in Nanocomposites: Influence of Cation Density, Head Group Structure, and Chain Length , 2010 .

[31]  Alvo Aabloo,et al.  Molecular dynamics simulation of the effect of nanoparticle fillers on ion motion in a polymer host , 2004 .

[32]  Maurizio Fermeglia,et al.  Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites , 2009 .

[33]  Elsa Reichmanis,et al.  Research in Macromolecular Science: Challenges and Opportunities for the Next Decade , 2009 .

[34]  Maurizio Fermeglia,et al.  To the nanoscale, and beyond!: Multiscale molecular modeling of polymer-clay nanocomposites , 2007 .

[35]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[36]  M. Lísal,et al.  Alignment of lamellar diblock copolymer phases under shear: insight from dissipative particle dynamics simulations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[37]  Teng Yong Ng,et al.  Simulating flow of DNA suspension using dissipative particle dynamics , 2006 .

[38]  Maurizio Fermeglia,et al.  Self-Assembly of Nanoparticle Mixtures in Diblock Copolymers: Multiscale Molecular Modeling , 2008 .

[39]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[40]  C. Hall,et al.  Computer Simulation of Block Copolymer/Nanoparticle Composites , 2005 .

[41]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .